001     186563
005     20240917155143.0
024 7 _ |a 10.3389/fimmu.2022.1063313
|2 doi
024 7 _ |a pmid:36591284
|2 pmid
024 7 _ |a pmc:PMC9794734
|2 pmc
024 7 _ |a altmetric:140184862
|2 altmetric
037 _ _ |a DKFZ-2023-00015
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Balta, Emre
|b 0
245 _ _ |a Expression of TRX1 optimizes the antitumor functions of human CAR T cells and confers resistance to a pro-oxidative tumor microenvironment.
260 _ _ |a Lausanne
|c 2022
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726581083_16365
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Use of chimeric antigen receptor (CAR) T cells to treat B cell lymphoma and leukemia has been remarkably successful. Unfortunately, the therapeutic efficacy of CAR T cells against solid tumors is very limited, with immunosuppression by the pro-oxidative tumor microenvironment (TME) a major contributing factor. High levels of reactive oxygen species are well-tolerated by tumor cells due to their elevated expression of antioxidant proteins; however, this is not the case for T cells, which consequently become hypo-responsive. The aim of this study was to improve CAR T cell efficacy in solid tumors by empowering the antioxidant capacity of CAR T cells against the pro-oxidative TME. To this end, HER2-specific human CAR T cells stably expressing two antioxidant systems: thioredoxin-1 (TRX1), and glutaredoxin-1 (GRX1) were generated and characterized. Thereafter, antitumor functions of CAR T cells were evaluated under control or pro-oxidative conditions. To provide insights into the role of antioxidant systems, gene expression profiles as well as global protein oxidation were analyzed. Our results highlight that TRX1 is pivotal for T cell redox homeostasis. TRX1 expression allows CAR T cells to retain their cytolytic immune synapse formation, cytokine release, proliferation, and tumor cell-killing properties under pro-oxidative conditions. Evaluation of differentially expressed genes and the first comprehensive redoxosome analysis of T cells by mass spectrometry further clarified the underlying mechanisms. Taken together, enhancement of the key antioxidant TRX1 in human T cells opens possibilities to increase the efficacy of CAR T cell treatment against solid tumors.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a CAR T cells
|2 Other
650 _ 7 |a ROS
|2 Other
650 _ 7 |a cancer immunotherapy
|2 Other
650 _ 7 |a redox regulation
|2 Other
650 _ 7 |a thioredoxin-1
|2 Other
650 _ 7 |a tumor microenvironment
|2 Other
650 _ 7 |a Thioredoxins
|0 52500-60-4
|2 NLM Chemicals
650 _ 7 |a Antioxidants
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Immunotherapy, Adoptive: methods
|2 MeSH
650 _ 2 |a Thioredoxins: metabolism
|2 MeSH
650 _ 2 |a Tumor Microenvironment
|2 MeSH
650 _ 2 |a Antioxidants: metabolism
|2 MeSH
650 _ 2 |a T-Lymphocytes
|2 MeSH
650 _ 2 |a Neoplasms
|2 MeSH
650 _ 2 |a Oxidation-Reduction
|2 MeSH
650 _ 2 |a Oxidative Stress
|2 MeSH
700 1 _ |a Janzen, Nina
|b 1
700 1 _ |a Kirchgessner, Henning
|b 2
700 1 _ |a Toufaki, Vasiliki
|b 3
700 1 _ |a Orlik, Christian
|b 4
700 1 _ |a Liang, Jie
|b 5
700 1 _ |a Lairikyengbam, Divya
|b 6
700 1 _ |a Abken, Hinrich
|b 7
700 1 _ |a Niesler, Beate
|b 8
700 1 _ |a Müller-Decker, Karin
|0 P:(DE-He78)799d978330dff449f8244947929a4518
|b 9
|u dkfz
700 1 _ |a Ruppert, Thomas
|b 10
700 1 _ |a Samstag, Yvonne
|b 11
773 _ _ |a 10.3389/fimmu.2022.1063313
|g Vol. 13, p. 1063313
|0 PERI:(DE-600)2606827-8
|p 1063313
|t Frontiers in immunology
|v 13
|y 2022
|x 1664-3224
909 C O |p VDB
|o oai:inrepo02.dkfz.de:186563
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)799d978330dff449f8244947929a4518
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2022
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT IMMUNOL : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T10:28:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T10:28:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-11T10:28:02Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-11T10:28:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT IMMUNOL : 2021
|d 2022-11-23
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-23
920 1 _ |0 I:(DE-He78)W420-20160331
|k W420
|l Gruppe Müller-Decker
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)W420-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21