001     186679
005     20240229154901.0
024 7 _ |a 10.1038/s41408-022-00772-9
|2 doi
024 7 _ |a pmid:36599831
|2 pmid
024 7 _ |a pmc:PMC9812999
|2 pmc
024 7 _ |a altmetric:140798777
|2 altmetric
037 _ _ |a DKFZ-2023-00048
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Mai, Elias K
|0 0000-0002-6226-1252
|b 0
245 _ _ |a Implications and prognostic impact of mass spectrometry in patients with newly-diagnosed multiple myeloma.
260 _ _ |a London [u.a.]
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673268625_12518
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mass spectrometry (MS) is a promising tool for monitoring monoclonal protein in plasma cell dyscrasias. We included 480 transplant-eligible newly-diagnosed multiple myeloma (MM) patients from the GMMG-MM5 trial (EudraCT No. 2010-019173-16) and performed a retrospective MS analysis at baseline (480 patients) and at the pre-defined, consecutive time points after induction (444 patients), prior to maintenance (305 patients) and after one year of maintenance (227 patients). We found that MS negativity was significantly associated with improved progression-free survival (PFS) even in patients with complete response (CR) at all investigated follow-up time points. The prognostic impact was independent of established risk factors, such as the revised International Staging System. Combining MS and baseline cytogenetics improved the prediction of outcome: MS-positive patients with high-risk cytogenetics had a dismal PFS of 1.9 years (95% confidence interval [CI]: 1.6-2.3 years) from the start of maintenance. Testing the value of sequential MS prior to and after one year of maintenance, patients converting from MS positivity to negativity had an excellent PFS (median not reached) while patients converting from MS negativity to positivity progressed early (median 0.6 years, 95% CI: 0.3-not reached). Among patients with sustained MS positivity, the baseline high-risk cytogenetic status had a significant impact and defined a group with poor PFS. Combining minimal residual disease (MRD) in the bone marrow and MS allowed the identification of double negative patients with a favorable PFS (median 3.33 years, 95% CI: 3.08-not reached) and no overall survival events. Our study provides strong evidence that MS is superior to conventional response monitoring, highlighting the potential of MS to become a new standard. Our data indicate that MS should be performed sequentially and combined with baseline disease features and MRD to improve its clinical value.Clinical Trials Register: EudraCT No. 2010-019173-16.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Multiple Myeloma: therapy
|2 MeSH
650 _ 2 |a Multiple Myeloma: drug therapy
|2 MeSH
650 _ 2 |a Prognosis
|2 MeSH
650 _ 2 |a Treatment Outcome
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
650 _ 2 |a Bone Marrow
|2 MeSH
650 _ 2 |a Neoplasm, Residual: diagnosis
|2 MeSH
700 1 _ |a Huhn, Stefanie
|b 1
700 1 _ |a Miah, Kaya
|0 P:(DE-He78)b97fc5666ea8f9db9ef499de6b2397cf
|b 2
|u dkfz
700 1 _ |a Poos, Alexandra M
|b 3
700 1 _ |a Scheid, Christof
|b 4
700 1 _ |a Weisel, Katja C
|0 0000-0001-9422-6614
|b 5
700 1 _ |a Bertsch, Uta
|b 6
700 1 _ |a Munder, Markus
|b 7
700 1 _ |a Berlanga, Oscar
|b 8
700 1 _ |a Hose, Dirk
|b 9
700 1 _ |a Seckinger, Anja
|b 10
700 1 _ |a Jauch, Anna
|b 11
700 1 _ |a Blau, Igor W
|b 12
700 1 _ |a Hänel, Mathias
|b 13
700 1 _ |a Salwender, Hans J
|0 0000-0001-7803-0814
|b 14
700 1 _ |a Benner, Axel
|b 15
700 1 _ |a Raab, Marc S
|b 16
700 1 _ |a Goldschmidt, Hartmut
|b 17
700 1 _ |a Weinhold, Niels
|b 18
773 _ _ |a 10.1038/s41408-022-00772-9
|g Vol. 13, no. 1, p. 1
|0 PERI:(DE-600)2600560-8
|n 1
|p 1
|t Blood cancer journal
|v 13
|y 2023
|x 2044-5385
909 C O |o oai:inrepo02.dkfz.de:186679
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b97fc5666ea8f9db9ef499de6b2397cf
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-14T16:18:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BLOOD CANCER J : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:11Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:09:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BLOOD CANCER J : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21