001     186693
005     20240229154902.0
024 7 _ |a 10.1002/mrm.29569
|2 doi
024 7 _ |a pmid:36622945
|2 pmid
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a altmetric:141461598
|2 altmetric
037 _ _ |a DKFZ-2023-00062
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Herrler, Jürgen
|0 0000-0002-4620-8216
|b 0
245 _ _ |a The effects of RF coils and SAR supervision strategies for clinically applicable nonselective parallel-transmit pulses at 7 T.
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677853986_22110
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E020# / 2023 May;89(5):1888-1900
520 _ _ |a To investigate the effects of using different parallel-transmit (pTx) head coils and specific absorption rate (SAR) supervision strategies on pTx pulse design for ultrahigh-field MRI using a 3D-MPRAGE sequence.The PTx universal pulses (UPs) and fast online-customized (FOCUS) pulses were designed with pre-acquired data sets (B0 , B1 + maps, specific absorption rate [SAR] supervision data) from two different 8 transmit/32 receive head coils on two 7T whole-body MR systems. For one coil, the SAR supervision model consisted of per-channel RF power limits. In the other coil, SAR estimations were done with both per-channel RF power limits as well as virtual observation points (VOPs) derived from electromagnetic field (EMF) simulations using three virtual human body models at three different positions. All pulses were made for nonselective excitation and inversion and evaluated on 132 B0 , B1 + , and SAR supervision datasets obtained with one coil and 12 from the other. At both sites, 3 subjects were examined using MPRAGE sequences that used UP/FOCUS pulses generated for both coils.For some subjects, the UPs underperformed when simulated on a different coil from which they were derived, whereas FOCUS pulses still showed acceptable performance in that case. FOCUS inversion pulses outperformed adiabatic pulses when scaled to the same local SAR level. For the self-built coil, the use of VOPs showed reliable overestimation compared with the ground-truth EMF simulations, predicting about 52% lower local SAR for inversion pulses compared with per-channel power limits.FOCUS inversion pulses offer a low-SAR alternative to adiabatic pulses and benefit from using EMF-based VOPs for SAR estimation.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a UHF MRI
|2 Other
650 _ 7 |a fast online customized (FOCUS) pulses
|2 Other
650 _ 7 |a parallel transmission (pTx)
|2 Other
650 _ 7 |a radiofrequency (RF) coils
|2 Other
650 _ 7 |a universal pulses (UPs)
|2 Other
650 _ 7 |a virtual observation points (VOPs)
|2 Other
700 1 _ |a Williams, Sydney N
|0 0000-0001-9979-6245
|b 1
700 1 _ |a Liebig, Patrick
|0 0000-0001-7342-3715
|b 2
700 1 _ |a Ding, Belinda
|b 3
700 1 _ |a McElhinney, Paul
|b 4
700 1 _ |a Allwood-Spiers, Sarah
|b 5
700 1 _ |a Meixner, Christian R
|0 0000-0003-2799-6277
|b 6
700 1 _ |a Gunamony, Shajan
|0 0000-0002-3146-6079
|b 7
700 1 _ |a Maier, Andreas
|b 8
700 1 _ |a Dörfler, Arnd
|b 9
700 1 _ |a Gumbrecht, Rene
|b 10
700 1 _ |a Porter, David A
|0 0000-0001-8436-6904
|b 11
700 1 _ |a Nagel, Armin
|0 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
|b 12
|e Last author
|u dkfz
773 _ _ |a 10.1002/mrm.29569
|g p. mrm.29569
|0 PERI:(DE-600)1493786-4
|n 5
|p 1888-1900
|t Magnetic resonance in medicine
|v 89
|y 2023
|x 1522-2594
909 C O |p VDB
|o oai:inrepo02.dkfz.de:186693
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21