001     186732
005     20240229154903.0
024 7 _ |a 10.1186/s40478-023-01504-1
|2 doi
024 7 _ |a pmid:36635768
|2 pmid
024 7 _ |a altmetric:141183160
|2 altmetric
037 _ _ |a DKFZ-2023-00084
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Okonechnikov, Konstantin
|0 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
|b 0
|e First author
|u dkfz
245 _ _ |a Comparison of transcriptome profiles between medulloblastoma primary and recurrent tumors uncovers novel variance effects in relapses.
260 _ _ |a London
|c 2023
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673622112_13654
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B062#LA:B300#
520 _ _ |a Nowadays medulloblastoma (MB) tumors can be treated with risk-stratified approaches with up to 80% success rate. However, disease relapses occur in approximately 30% of patients and successful salvage treatment strategies at relapse remain scarce. Acquired copy number changes or TP53 mutations are known to occur frequently in relapses, while methylation profiles usually remain highly similar to those of the matching primary tumors, indicating that in general molecular subgrouping does not change during the course of the disease. In the current study, we have used RNA sequencing data to analyze the transcriptome profiles of 43 primary-relapse MB pairs in order to identify specific molecular features of relapses within various tumor groups. Gene variance analysis between primary and relapse samples demonstrated the impact of age in SHH-MB: the changes in gene expression relapse profiles were more pronounced in the younger patients (< 10 years old), which were also associated with increased DNA aberrations and somatic mutations at relapse probably driving this effect. For Group 3/4 MB transcriptome data analysis uncovered clear sets of genes either active or decreased at relapse that are significantly associated with survival, thus could be potential predictive markers. In addition, deconvolution analysis of bulk transcriptome data identified progression-associated differences in cell type enrichment. The proportion of undifferentiated progenitors increased in SHH-MB relapses with a concomitant decrease of differentiated neuron-like cells, while in Group 3/4 MB relapses cell cycle activity increases and differentiated neuron-like cells proportion decreases as well. Thus, our findings uncovered significant transcriptome changes in the molecular signatures of relapsed MB and could be potentially useful for further clinical purposes.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Medulloblastoma
|2 Other
650 _ 7 |a Prognosis
|2 Other
650 _ 7 |a Relapses
|2 Other
650 _ 7 |a Transcriptomics
|2 Other
700 1 _ |a Federico, Aniello
|0 P:(DE-He78)32c5110cd42ee8a96b18a3e8909bd0a9
|b 1
|u dkfz
700 1 _ |a Schrimpf, Daniel
|0 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
|b 2
|u dkfz
700 1 _ |a Sievers, Philipp
|0 P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6
|b 3
|u dkfz
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 4
|u dkfz
700 1 _ |a Koster, Jan
|b 5
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 6
|u dkfz
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 7
|u dkfz
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 8
|u dkfz
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 9
|u dkfz
700 1 _ |a Korshunov, Andrey
|0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1186/s40478-023-01504-1
|g Vol. 11, no. 1, p. 7
|0 PERI:(DE-600)2715589-4
|n 1
|p 7
|t Acta Neuropathologica Communications
|v 11
|y 2023
|x 2051-5960
909 C O |o oai:inrepo02.dkfz.de:186732
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)32c5110cd42ee8a96b18a3e8909bd0a9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:14Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:09:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2023-10-26
920 2 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 1
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pediatric Glioma
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 0 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21