000212413 001__ 212413
000212413 005__ 20240229154906.0
000212413 0247_ $$2doi$$a10.3389/fmolb.2022.1106477
000212413 0247_ $$2pmid$$apmid:36660429
000212413 0247_ $$2pmc$$apmc:PMC9845930
000212413 0247_ $$2altmetric$$aaltmetric:141025647
000212413 037__ $$aDKFZ-2023-00132
000212413 041__ $$aEnglish
000212413 082__ $$a570
000212413 1001_ $$aJawed, Areeb$$b0
000212413 245__ $$aBalanced activities of Hsp70 and the ubiquitin proteasome system underlie cellular protein homeostasis.
000212413 260__ $$aLausanne$$bFrontiers$$c2023
000212413 3367_ $$2DRIVER$$aarticle
000212413 3367_ $$2DataCite$$aOutput Types/Journal article
000212413 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674473749_24708
000212413 3367_ $$2BibTeX$$aARTICLE
000212413 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000212413 3367_ $$00$$2EndNote$$aJournal Article
000212413 500__ $$a#LA:A250#
000212413 520__ $$aTo counteract proteotoxic stress and cellular aging, protein quality control (PQC) systems rely on the refolding, degradation and sequestration of misfolded proteins. In Saccharomyces cerevisiae the Hsp70 chaperone system plays a central role in protein refolding, while degradation is predominantly executed by the ubiquitin proteasome system (UPS). The sequestrases Hsp42 and Btn2 deposit misfolded proteins in cytosolic and nuclear inclusions, thereby restricting the accessibility of misfolded proteins to Hsp70 and preventing the exhaustion of limited Hsp70 resources. Therefore, in yeast, sequestrase mutants show negative genetic interactions with double mutants lacking the Hsp70 co-chaperone Fes1 and the Hsp104 disaggregase (fes1Δ hsp104Δ, ΔΔ) and suffering from low Hsp70 capacity. Growth of ΔΔbtn2Δ mutants is highly temperature-sensitive and results in proteostasis breakdown at non-permissive temperatures. Here, we probed for the role of the ubiquitin proteasome system in maintaining protein homeostasis in ΔΔbtn2Δ cells, which are affected in two major protein quality control branches. We show that ΔΔbtn2Δ cells induce expression of diverse stress-related pathways including the ubiquitin proteasome system to counteract the proteostasis defects. Ubiquitin proteasome system dependent degradation of the stringent Hsp70 substrate firefly Luciferase in the mutant cells mirrors such compensatory activities of the protein quality control system. Surprisingly however, the enhanced ubiquitin proteasome system activity does not improve but aggravates the growth defects of ΔΔbtn2Δ cells. Reducing ubiquitin proteasome system activity in the mutant by lowering the levels of functional 26S proteasomes improved growth, increased refolding yield of the Luciferase reporter and attenuated global stress responses. Our findings indicate that an imbalance between Hsp70-dependent refolding, sequestration and ubiquitin proteasome system-mediated degradation activities strongly affects protein homeostasis of Hsp70 capacity mutants and contributes to their severe growth phenotypes.
000212413 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000212413 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000212413 650_7 $$2Other$$a26S proteasome
000212413 650_7 $$2Other$$aHsp70
000212413 650_7 $$2Other$$achaperone
000212413 650_7 $$2Other$$aprotein quality control
000212413 650_7 $$2Other$$aprotein sequestration
000212413 7001_ $$aHo, Chi-Ting$$b1
000212413 7001_ $$aGrousl, Tomas$$b2
000212413 7001_ $$aShrivastava, Aseem$$b3
000212413 7001_ $$aRuppert, Thomas$$b4
000212413 7001_ $$0P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476$$aBukau, Bernd$$b5$$eLast author$$udkfz
000212413 7001_ $$aMogk, Axel$$b6
000212413 773__ $$0PERI:(DE-600)2814330-9$$a10.3389/fmolb.2022.1106477$$gVol. 9, p. 1106477$$p1106477$$tFrontiers in molecular biosciences$$v9$$x2296-889X$$y2023
000212413 909CO $$ooai:inrepo02.dkfz.de:212413$$pVDB
000212413 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000212413 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000212413 9141_ $$y2023
000212413 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T12:25:52Z
000212413 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T12:25:52Z
000212413 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-11T12:25:52Z
000212413 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-22
000212413 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
000212413 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
000212413 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-22
000212413 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-22
000212413 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MOL BIOSCI : 2022$$d2023-10-26
000212413 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000212413 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000212413 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000212413 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-11T12:25:52Z
000212413 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000212413 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000212413 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000212413 9201_ $$0I:(DE-He78)A250-20160331$$kA250$$lA250 Chaperone und Proteasen$$x0
000212413 980__ $$ajournal
000212413 980__ $$aVDB
000212413 980__ $$aI:(DE-He78)A250-20160331
000212413 980__ $$aUNRESTRICTED