001     212428
005     20240229154906.0
024 7 _ |a 10.3390/cancers15020479
|2 doi
024 7 _ |a pmid:36672428
|2 pmid
024 7 _ |a pmc:PMC9856301
|2 pmc
037 _ _ |a DKFZ-2023-00147
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Arseni, Lavinia
|0 P:(DE-He78)1875dd3a72033b3b8b5b55d10c6229dd
|b 0
|e First author
|u dkfz
245 _ _ |a Sphingosine-1-Phosphate Recruits Macrophages and Microglia and Induces a Pro-Tumorigenic Phenotype That Favors Glioma Progression.
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674470084_24708
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance / #EA:B060#LA:B060#
520 _ _ |a Glioblastoma is the most aggressive brain tumor in adults. Treatment failure is predominantly caused by its high invasiveness and its ability to induce a supportive microenvironment. As part of this, a major role for tumor-associated macrophages/microglia (TAMs) in glioblastoma development was recognized. Phospholipids are important players in various fundamental biological processes, including tumor-stroma crosstalk, and the bioactive lipid sphingosine-1-phosphate (S1P) has been linked to glioblastoma cell proliferation, invasion, and survival. Despite the urgent need for better therapeutic approaches, novel strategies targeting sphingolipids in glioblastoma are still poorly explored. Here, we showed that higher amounts of S1P secreted by glioma cells are responsible for an active recruitment of TAMs, mediated by S1P receptor (S1PR) signaling through the modulation of Rac1/RhoA. This resulted in increased infiltration of TAMs in the tumor, which, in turn, triggered their pro-tumorigenic phenotype through the inhibition of NFkB-mediated inflammation. Gene set enrichment analyses showed that such an anti-inflammatory microenvironment correlated with shorter survival of glioblastoma patients. Inhibition of S1P restored a pro-inflammatory phenotype in TAMs and resulted in increased survival of tumor-bearing mice. Taken together, our results establish a crucial role for S1P in fine-tuning the crosstalk between glioma and infiltrating TAMs, thus pointing to the S1P-S1PR axis as an attractive target for glioma treatment.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a S1P
|2 Other
650 _ 7 |a anti-inflammatory
|2 Other
650 _ 7 |a glioblastoma
|2 Other
650 _ 7 |a microenvironment
|2 Other
650 _ 7 |a tumor-associated macrophages/microglia
|2 Other
700 1 _ |a Sharma, Rakesh
|0 P:(DE-He78)712670f67b229b25980c0e1c88ae8a09
|b 1
700 1 _ |a Mack, Norman
|0 P:(DE-He78)e73a0a4fab40344d89d693cbe1df3109
|b 2
|u dkfz
700 1 _ |a Nagalla, Deepthi
|0 P:(DE-He78)22d5965a3a728414a0fd8c37639a1e99
|b 3
700 1 _ |a Ohl, Sibylle
|0 P:(DE-He78)5ad7de84a84805746cf4d7f7f90cdbff
|b 4
|u dkfz
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 5
|u dkfz
700 1 _ |a Singhal, Mahak
|0 P:(DE-He78)1956b17ee4a34a5fdd72287aca7cdc0a
|b 6
|u dkfz
700 1 _ |a Engel, Robert
|0 P:(DE-He78)b311cdc556fc52393ea4902245ec422b
|b 7
|u dkfz
700 1 _ |a Augustin, Hellmut
|0 P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b
|b 8
|u dkfz
700 1 _ |a Sandhoff, Roger
|0 P:(DE-He78)a928ded2085c8911822370cad0b4a728
|b 9
|u dkfz
700 1 _ |a Herold-Mende, Christel
|b 10
700 1 _ |a Tews, Björn
|0 P:(DE-He78)a33ae52a1d80b847405db3ab83b9e90d
|b 11
700 1 _ |a Lichter, Peter
|0 P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c
|b 12
|u dkfz
700 1 _ |a Seiffert, Martina
|0 P:(DE-He78)e67f907703fcb2cf909f4d72d50268b5
|b 13
|e Last author
|u dkfz
773 _ _ |a 10.3390/cancers15020479
|g Vol. 15, no. 2, p. 479 -
|0 PERI:(DE-600)2527080-1
|n 2
|p 479
|t Cancers
|v 15
|y 2023
|x 2072-6694
909 C O |o oai:inrepo02.dkfz.de:212428
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)1875dd3a72033b3b8b5b55d10c6229dd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)712670f67b229b25980c0e1c88ae8a09
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e73a0a4fab40344d89d693cbe1df3109
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)22d5965a3a728414a0fd8c37639a1e99
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)5ad7de84a84805746cf4d7f7f90cdbff
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)1956b17ee4a34a5fdd72287aca7cdc0a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)b311cdc556fc52393ea4902245ec422b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)a928ded2085c8911822370cad0b4a728
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)a33ae52a1d80b847405db3ab83b9e90d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)e67f907703fcb2cf909f4d72d50268b5
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-01-24T07:56:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-31T16:07:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-31T16:07:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-31T16:07:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2022
|d 2023-10-26
920 2 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 0
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)A190-20160331
|k A190
|l A190 Vaskuläre Onkologie und Metastasierung
|x 3
920 1 _ |0 I:(DE-He78)A411-20160331
|k A411
|l Lipid-Pathobiochemie
|x 4
920 0 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)A190-20160331
980 _ _ |a I:(DE-He78)A411-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21