001     212479
005     20240229154912.0
024 7 _ |a 10.1515/cclm-2022-1151
|2 doi
024 7 _ |a pmid:36696602
|2 pmid
024 7 _ |a 1434-6621
|2 ISSN
024 7 _ |a 0939-4974
|2 ISSN
024 7 _ |a 1437-4331
|2 ISSN
024 7 _ |a altmetric:141789674
|2 altmetric
037 _ _ |a DKFZ-2023-00187
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lennerz, Jochen K
|b 0
245 _ _ |a Diagnostic quality model (DQM): an integrated framework for the assessment of diagnostic quality when using AI/ML.
260 _ _ |a Berlin [u.a.]
|c 2023
|b De Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677854166_22113
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Department of Otorhinolaryngology, Head and Neck Surgery, German Cancer Research Center (DKFZ), / 2023 Jan 25;61(4):544-557
520 _ _ |a Laboratory medicine has reached the era where promises of artificial intelligence and machine learning (AI/ML) seem palpable. Currently, the primary responsibility for risk-benefit assessment in clinical practice resides with the medical director. Unfortunately, there is no tool or concept that enables diagnostic quality assessment for the various potential AI/ML applications. Specifically, we noted that an operational definition of laboratory diagnostic quality - for the specific purpose of assessing AI/ML improvements - is currently missing.A session at the 3rd Strategic Conference of the European Federation of Laboratory Medicine in 2022 on 'AI in the Laboratory of the Future' prompted an expert roundtable discussion. Here we present a conceptual diagnostic quality framework for the specific purpose of assessing AI/ML implementations.The presented framework is termed diagnostic quality model (DQM) and distinguishes AI/ML improvements at the test, procedure, laboratory, or healthcare ecosystem level. The operational definition illustrates the nested relationship among these levels. The model can help to define relevant objectives for implementation and how levels come together to form coherent diagnostics. The affected levels are referred to as scope and we provide a rubric to quantify AI/ML improvements while complying with existing, mandated regulatory standards. We present 4 relevant clinical scenarios including multi-modal diagnostics and compare the model to existing quality management systems.A diagnostic quality model is essential to navigate the complexities of clinical AI/ML implementations. The presented diagnostic quality framework can help to specify and communicate the key implications of AI/ML solutions in laboratory diagnostics.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a artificial intelligence
|2 Other
650 _ 7 |a biomarker
|2 Other
650 _ 7 |a laboratory medicine
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a regulatory science
|2 Other
700 1 _ |a Salgado, Roberto
|b 1
700 1 _ |a Kim, Grace E
|b 2
700 1 _ |a Sirintrapun, Sahussapont Joseph
|b 3
700 1 _ |a Thierauf, Julia C
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Singh, Ankit
|b 5
700 1 _ |a Indave, Iciar
|b 6
700 1 _ |a Bard, Adam
|b 7
700 1 _ |a Weissinger, Stephanie E
|b 8
700 1 _ |a Heher, Yael K
|b 9
700 1 _ |a de Baca, Monica E
|b 10
700 1 _ |a Cree, Ian A
|b 11
700 1 _ |a Bennett, Shannon
|b 12
700 1 _ |a Carobene, Anna
|b 13
700 1 _ |a Ozben, Tomris
|b 14
700 1 _ |a Ritterhouse, Lauren L
|b 15
773 _ _ |a 10.1515/cclm-2022-1151
|g Vol. 0, no. 0
|0 PERI:(DE-600)1492732-9
|n 4
|p 544-557
|t Clinical chemistry and laboratory medicine
|v 61
|y 2023
|x 1434-6621
909 C O |p VDB
|o oai:inrepo02.dkfz.de:212479
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-10
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN CHEM LAB MED : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CLIN CHEM LAB MED : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)E221-20160331
|k E221
|l E221 Molekulare Grundlagen von HNO-Tumoren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E221-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21