001     212517
005     20240229154913.0
024 7 _ |a 10.1177/23814683221145701
|2 doi
024 7 _ |a pmid:36698854
|2 pmid
024 7 _ |a pmc:PMC9869210
|2 pmc
037 _ _ |a DKFZ-2023-00202
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Cheng, Chih-Yuan
|0 P:(DE-He78)d2944f54ead34dbf6fb03e359225a1b9
|b 0
|e First author
245 _ _ |a Modeling the Natural History and Screening Effects of Colorectal Cancer Using Both Adenoma and Serrated Neoplasia Pathways: The Development, Calibration, and Validation of a Discrete Event Simulation Model.
260 _ _ |a London
|c 2023
|b Sage Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675070763_21995
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C100#LA:C100#
520 _ _ |a Background. Existing colorectal cancer (CRC) screening models mostly focus on the adenoma pathway of CRC development, overlooking the serrated neoplasia pathway, which might result in overly optimistic screening predictions. In addition, Bayesian inference methods have not been widely used for model calibration. We aimed to develop a CRC screening model accounting for both pathways, calibrate it with approximate Bayesian computation (ABC) methods, and validate it with large CRC screening trials. Methods. A discrete event simulation (DES) of the CRC natural history (DECAS) was constructed using the adenoma and serrated pathways in R software. The model simulates CRC-related events in a specific birth cohort through various natural history states. Calibration took advantage of 74 prevalence data points from the German screening colonoscopy program of 5.2 million average-risk participants using an ABC method. CRC incidence outputs from DECAS were validated with the German national cancer registry data; screening effects were validated using 17-y data from the UK Flexible Sigmoidoscopy Screening sigmoidoscopy trial and a German screening colonoscopy cohort study. Results. The Bayesian calibration rendered 1,000 sets of posterior parameter samples. With the calibrated parameters, the observed age- and sex-specific CRC prevalences from the German registries were within the 95% DECAS-predicted intervals. Regarding screening effects, DECAS predicted a 41% (95% intervals 30%-51%) and 62% (95% intervals 55%-68%) reduction in 17-y cumulative CRC mortality for a single screening sigmoidoscopy and colonoscopy, respectively, falling within 95% confidence intervals reported in the 2 clinical studies used for validation. Conclusions. We presented DECAS, the first Bayesian-calibrated DES model for CRC natural history and screening, accounting for 2 CRC tumorigenesis pathways. The validated model can serve as a valid tool to evaluate the (cost-)effectiveness of CRC screening strategies.This article presents a new discrete event simulation model, DECAS, which models both adenoma-carcinoma and serrated neoplasia pathways for colorectal cancer (CRC) development and CRC screening effects.DECAS is calibrated based on a Bayesian inference method using the data from German screening colonoscopy program, which consists of more than 5 million first-time average-risk participants aged 55 years and older in 2003 to 2014.DECAS is flexible for evaluating various CRC screening strategies and can differentiate screening effects in different parts of the colon.DECAS is validated with large screening sigmoidoscopy and colonoscopy clinical study data and can be further used to evaluate the (cost-)effectiveness of German colorectal cancer screening strategies.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a bayesian calibration
|2 Other
650 _ 7 |a colorectal cancer
|2 Other
650 _ 7 |a discrete event simulation
|2 Other
650 _ 7 |a screening
|2 Other
650 _ 7 |a serrated polyps
|2 Other
700 1 _ |a Calderazzo, Silvia
|0 P:(DE-He78)b5d9469407737829d5348adb615655c6
|b 1
|u dkfz
700 1 _ |a Schramm, Christoph
|b 2
700 1 _ |a Schlander, Michael
|0 P:(DE-He78)1f315d09721b91091df1ba78eb65cbaf
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1177/23814683221145701
|g Vol. 8, no. 1, p. 238146832211457 -
|0 PERI:(DE-600)2861432-X
|n 1
|p 238146832211457 -
|t Medical decision making policy & practice
|v 8
|y 2023
|x 2381-4683
909 C O |o oai:inrepo02.dkfz.de:212517
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d2944f54ead34dbf6fb03e359225a1b9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)b5d9469407737829d5348adb615655c6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)1f315d09721b91091df1ba78eb65cbaf
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-15T16:51:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-15T16:51:08Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-16
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MDM POLICY PRACT : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-01-15T16:51:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 2 _ |0 I:(DE-He78)C100-20160331
|k C100
|l Gesundheitsökonomie
|x 0
920 1 _ |0 I:(DE-He78)C100-20160331
|k C100
|l Gesundheitsökonomie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 0 _ |0 I:(DE-He78)C100-20160331
|k C100
|l Gesundheitsökonomie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C100-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21