001     212548
005     20240918105320.0
024 7 _ |a 10.1002/art.42456
|2 doi
024 7 _ |a pmid:36704915
|2 pmid
024 7 _ |a 2326-5191
|2 ISSN
024 7 _ |a 2326-5205
|2 ISSN
024 7 _ |a altmetric:142567660
|2 altmetric
037 _ _ |a DKFZ-2023-00233
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kraus, Franziska V
|b 0
245 _ _ |a Reduction of pro-inflammatory effector functions through remodeling of fatty acid metabolism in CD8+ T-cells from rheumatoid arthritis patients.
260 _ _ |a Hoboken, NJ
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726649578_8429
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2023 Jul;75(7):1098-1109
520 _ _ |a Rheumatoid arthritis (RA) CD8+ T-cells (CD8) maintain their effector pro-inflammatory phenotype by changing their metabolism towards aerobic glycolysis. However, their massive energetic and biosynthetic needs may require additional substrates other than glucose. Since systemic alterations in lipid metabolism have been reported in RA patients, we explored the role of fatty acid (FA) metabolism in CD8 to identify potential targets to curb their pro-inflammatory potential.The expression of FA metabolism-related genes was analyzed for total and CD8-subsets in the data of RA patients and healthy controls retrieved from the gene expression omnibus database. Functional assays were performed on peripheral-blood CD8 isolated from RA (n=31), PsA (n=26), and SpA (n=21) patients under different therapies (DMARD, biologicals, and JAK inhibitors) and controls (n=13). We quantified the expression of FA transporters, lipid uptake, intracellular FA content, cytokine production, activation, proliferation, and capacity to inhibit tumor cell growth, either with or without FA metabolism inhibitors.The CD8 gene expression profile of FA metabolism-related genes was significantly different between untreated RA patients and controls. RA patients with a good clinical response after 6 months MTX therapy significantly increased the expression of FA metabolism-related genes. Cell-surface expression of FA transporters FABP4 and GPR84 and FA uptake was higher in effector and memory CD8 of RA patients than for controls. In vitro blockade of FA metabolism significantly impaired CD8 effector functions.RA CD8 present an altered FA metabolism which can provide potential therapeutic targets to control the pro-inflammatory profile. Particularly, therapies directed against the transport and oxidation of free FA.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
542 _ _ |i 2023-04-13
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
542 _ _ |i 2023-01-27
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
542 _ _ |i 2023-04-13
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Keck, Simon
|b 1
700 1 _ |a Klika, Karel
|0 P:(DE-He78)c53db83479d3d1265967405af71f69bb
|b 2
|u dkfz
700 1 _ |a Graf, Jürgen
|b 3
700 1 _ |a Carvalho, Rui A
|b 4
700 1 _ |a Lorenz, Hanns-Martin
|b 5
700 1 _ |a Souto-Carneiro, M Margarida
|0 0000-0001-6923-0590
|b 6
773 1 8 |a 10.1002/art.42456
|b Wiley
|d 2023-04-13
|3 journal-article
|2 Crossref
|t Arthritis & Rheumatology
|y 2023
|x 2326-5191
773 _ _ |a 10.1002/art.42456
|g p. art.42456
|0 PERI:(DE-600)2754614-7
|n 7
|p 1098-1109
|t Arthritis & rheumatology
|v 75
|y 2023
|x 2326-5191
909 C O |p VDB
|o oai:inrepo02.dkfz.de:212548
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c53db83479d3d1265967405af71f69bb
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ARTHRITIS RHEUMATOL : 2022
|d 2023-10-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ARTHRITIS RHEUMATOL : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-He78)W160-20160331
|k W160
|l Molekulare Strukturanalyse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)W160-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1002/art.1780050606
|9 -- missing cx lookup --
|1 Bole GG
|p 589 -
|2 Crossref
|t Arthritis Rheum
|v 5
|y 1962
999 C 5 |1 Ryu H
|y 2019
|2 Crossref
|o Ryu H 2019
999 C 5 |a 10.1038/ni.2570
|9 -- missing cx lookup --
|1 Kidani Y
|p 489 -
|2 Crossref
|t Nat Immunol
|v 14
|y 2013
999 C 5 |a 10.1002/art.41420
|9 -- missing cx lookup --
|1 Souto‐Carneiro MM
|p 2050 -
|2 Crossref
|t Arthritis Rheumatol
|v 72
|y 2020
999 C 5 |a 10.1038/ni.3808
|9 -- missing cx lookup --
|1 Shen Y
|p 1025 -
|2 Crossref
|t Nat Immunol
|v 18
|y 2017
999 C 5 |a 10.1016/j.cell.2008.04.052
|9 -- missing cx lookup --
|1 Bensinger SJ
|p 97 -
|2 Crossref
|t Cell
|v 134
|y 2008
999 C 5 |a 10.3389/fimmu.2021.652771
|1 Qiu J
|9 -- missing cx lookup --
|2 Crossref
|t Front Immunol
|v 12
|y 2021
999 C 5 |a 10.1111/sji.12713
|1 Qian X
|9 -- missing cx lookup --
|2 Crossref
|t Scand J Immunol
|v 88
|y 2018
999 C 5 |a 10.1016/j.immuni.2011.09.021
|9 -- missing cx lookup --
|1 Wang R
|p 871 -
|2 Crossref
|t Immunity
|v 35
|y 2011
999 C 5 |a 10.1038/nature21379
|9 -- missing cx lookup --
|1 Pan Y
|p 252 -
|2 Crossref
|t Nature
|v 543
|y 2017
999 C 5 |1 O'Sullivan D
|y 2014
|2 Crossref
|o O'Sullivan D 2014
999 C 5 |a 10.1189/jlb.0213074
|9 -- missing cx lookup --
|1 Zamora C
|p 521 -
|2 Crossref
|t J Leukoc Biol
|v 94
|y 2013
999 C 5 |a 10.1016/j.immuni.2021.05.003
|9 -- missing cx lookup --
|1 Xu S
|p 1561 -
|2 Crossref
|t Immunity
|v 54
|y 2021
999 C 5 |a 10.1074/jbc.M608019200
|9 -- missing cx lookup --
|1 Wang J
|p 34457 -
|2 Crossref
|t J Biol Chem
|v 281
|y 2006
999 C 5 |1 Benesova K
|y 2022
|2 Crossref
|o Benesova K 2022
999 C 5 |a 10.1093/nar/gkab1028
|9 -- missing cx lookup --
|1 Gillespie M
|p D687 -
|2 Crossref
|t Nucleic Acids Res
|v 50
|y 2022
999 C 5 |a 10.1038/s41597-022-01264-y
|9 -- missing cx lookup --
|1 Isaacs JD
|p 196 -
|2 Crossref
|t Sci Data
|v 9
|y 2022
999 C 5 |a 10.1038/s41598-021-96300-z
|9 -- missing cx lookup --
|1 Inamo J
|p 16691 -
|2 Crossref
|t Sci Rep
|v 11
|y 2021
999 C 5 |1 Takeshita M
|y 2019
|2 Crossref
|o Takeshita M 2019
999 C 5 |a 10.1186/s12859-020-03577-4
|9 -- missing cx lookup --
|1 Yousif A
|p 267 -
|2 Crossref
|t BMC Bioinformatics
|v 21
|y 2020
999 C 5 |a 10.1093/nar/gkab382
|9 -- missing cx lookup --
|1 Pang Z
|p W388 -
|2 Crossref
|t Nucleic Acids Res
|v 49
|y 2021
999 C 5 |a 10.1074/jbc.M112.420042
|9 -- missing cx lookup --
|1 Suzuki M
|p 10684 -
|2 Crossref
|t J Biol Chem
|v 288
|y 2013
999 C 5 |a 10.1186/1471-2121-9-45
|9 -- missing cx lookup --
|1 Ehehalt R
|p 45 -
|2 Crossref
|t BMC Cell Biol
|v 9
|y 2008
999 C 5 |a 10.3389/fimmu.2017.01949
|9 -- missing cx lookup --
|1 Howie D
|p 1949 -
|2 Crossref
|t Front Immunol
|v 8
|y 2017
999 C 5 |a 10.1038/nature08097
|9 -- missing cx lookup --
|1 Pearce EL
|p 103 -
|2 Crossref
|t Nat
|v 460
|y 2009
999 C 5 |a 10.1016/j.cca.2005.08.010
|9 -- missing cx lookup --
|1 Allanore Y
|p 143 -
|2 Crossref
|t Clin Chim Acta
|v 365
|y 2006
999 C 5 |a 10.3390/metabo11120824
|9 -- missing cx lookup --
|1 Medcalf MR
|p 824 -
|2 Crossref
|t Metabolites
|v 11
|y 2021
999 C 5 |a 10.1002/art.39502
|9 -- missing cx lookup --
|1 Charles‐Schoeman C
|p 577 -
|2 Crossref
|t Arthritis Rheumatol
|v 68
|y 2016
999 C 5 |a 10.1007/s00296-017-3844-9
|9 -- missing cx lookup --
|1 Kume K
|p 2079 -
|2 Crossref
|t Rheumatol Int
|v 37
|y 2017
999 C 5 |a 10.1002/art.37916
|9 -- missing cx lookup --
|1 Navarro‐Millán I
|p 1430 -
|2 Crossref
|t Arthritis Rheum
|v 65
|y 2013
999 C 5 |a 10.1016/0005-2760(88)90247-0
|9 -- missing cx lookup --
|1 Aarsaether N
|p 70 -
|2 Crossref
|t Biochim Biophys Acta
|v 958
|y 1988
999 C 5 |a 10.1038/s41584-020-0373-9
|9 -- missing cx lookup --
|1 Cronstein BN
|p 145 -
|2 Crossref
|t Nat Rev Rheumatol
|v 16
|y 2020
999 C 5 |a 10.1038/s41374-021-00679-2
|9 -- missing cx lookup --
|1 Xu L
|p 25 -
|2 Crossref
|t Lab Invest
|v 102
|y 2022
999 C 5 |a 10.1016/j.ccell.2017.08.004
|9 -- missing cx lookup --
|1 Zhang Y
|p 377 -
|2 Crossref
|t Cancer Cell
|v 32
|y 2017
999 C 5 |a 10.1016/j.lfs.2003.04.003
|9 -- missing cx lookup --
|1 Verlengia R
|p 2939 -
|2 Crossref
|t Life Sci
|v 73
|y 2003
999 C 5 |a 10.1161/ATVBAHA.112.250142
|9 -- missing cx lookup --
|1 Anderson EK
|p 1687 -
|2 Crossref
|t Arterioscler Thromb Vasc Biol
|v 32
|y 2012
999 C 5 |a 10.1038/srep13092
|9 -- missing cx lookup --
|1 Miao H
|p 13092 -
|2 Crossref
|t Sci Rep
|v 5
|y 2015
999 C 5 |a 10.1084/jem.20112607
|9 -- missing cx lookup --
|1 Finlay DK
|p 2441 -
|2 Crossref
|t J Exp Med
|v 209
|y 2012
999 C 5 |a 10.1016/S0140-6736(04)16449-0
|9 -- missing cx lookup --
|1 McCarey DW
|p 2015 -
|2 Crossref
|t Lancet
|v 363
|y 2004


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21