Home > Publications database > Simultaneous Multislice Accelerated TSE for Improved Spatiotemporal Resolution and Diagnostic Accuracy in Magnetic Resonance Neurography: A Feasibility Study. > print |
001 | 241161 | ||
005 | 20240229145758.0 | ||
024 | 7 | _ | |a 10.1097/RLI.0000000000000940 |2 doi |
024 | 7 | _ | |a pmid:36729753 |2 pmid |
024 | 7 | _ | |a 0020-9996 |2 ISSN |
024 | 7 | _ | |a 1536-0210 |2 ISSN |
037 | _ | _ | |a DKFZ-2023-00269 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Preisner, Fabian |b 0 |
245 | _ | _ | |a Simultaneous Multislice Accelerated TSE for Improved Spatiotemporal Resolution and Diagnostic Accuracy in Magnetic Resonance Neurography: A Feasibility Study. |
260 | _ | _ | |a [Erscheinungsort nicht ermittelbar] |c 2023 |b Ovid |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1681886515_17224 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2023 May 1;58(5):363-371 |
520 | _ | _ | |a This study aims to evaluate the utility of simultaneous multislice (SMS) acceleration for routine magnetic resonance neurography (MRN) at 3 T.Patients with multiple sclerosis underwent MRN of the sciatic nerve consisting of a standard fat-saturated T2-weighted turbo spin echo (TSE) sequence using integrated parallel acquisition technique (PAT2) acceleration and 2 T2 TSE sequences using a combination of PAT-SMS acceleration (1) to reduce scan time (PAT2-SMS2; SMS-TSEFAST) and (2) for time neutral increase of in-plane resolution (PAT1-SMS2; SMS-TSEHR). Acquisition times were 5:29 minutes for the standard T2 TSE, 3:12 minutes for the SMS-TSEFAST, and 5:24 minutes for the SMS-TSEHR. Six qualitative imaging parameters were analyzed by 2 blinded readers using a 5-point Likert scale and T2 nerve lesions were quantified, respectively. Qualitative and quantitative image parameters were compared, and both interrater and intrarater reproducibility were statistically assessed. In addition, signal-to-noise ratio/contrast-to-noise ratio (CNR) was obtained in healthy controls using the exact same imaging protocol.A total of 15 patients with MS (mean age ± standard deviation, 38.1 ± 11 years) and 10 healthy controls (mean age, 29.1 ± 7 years) were enrolled in this study. CNR analysis was highly reliable (intraclass correlation coefficient, 0.755-0.948) and revealed a significant CNR decrease for the sciatic nerve for both SMS protocols compared with standard T2 TSE (SMS-TSEFAST/SMS-TSEHR, -39%/-55%; P ≤ 0.01). Intrarater and interrater reliability of qualitative image review was good to excellent (κ: 0.672-0.971/0.617-0.883). Compared with the standard T2 TSE sequence, both SMS methods were shown to be superior in reducing pulsatile flow artifacts (P < 0.01). Ratings for muscle border sharpness, detailed muscle structures, nerve border sharpness, and nerve fascicular structure did not differ significantly between the standard T2 TSE and the SMS-TSEFAST (P > 0.05) and were significantly better for the SMS-TSEHR than for standard T2 TSE (P < 0.001). Muscle signal homogeneity was mildly inferior for both SMS-TSEFAST (P > 0.05) and SMS-TSEHR (P < 0.001). A significantly higher number of T2 nerve lesions were detected by SMS-TSEHR (P ≤ 0.01) compared with the standard T2 TSE and SMS-TSEFAST, whereas no significant difference was observed between the standard T2 TSE and SMS-TSEFAST.Implementation of SMS offers either to substantially reduce acquisition time by over 40% without significantly impeding image quality compared with the standard T2 TSE or to increase in-plane resolution for a high-resolution approach and improved depiction of T2 nerve lesions while keeping acquisition times constant. This addresses the specific needs of MRN by providing different imaging approaches for 2D clinical MRN. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Hayes, Jennifer C |b 1 |
700 | 1 | _ | |a Charlet, Tobias |b 2 |
700 | 1 | _ | |a Carinci, Flavio |b 3 |
700 | 1 | _ | |a Hielscher, Thomas |0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f |b 4 |u dkfz |
700 | 1 | _ | |a Schwarz, Daniel |b 5 |
700 | 1 | _ | |a Vollherbst, Dominik F |b 6 |
700 | 1 | _ | |a Breckwoldt, Michael O |b 7 |
700 | 1 | _ | |a Jesser, Jessica |b 8 |
700 | 1 | _ | |a Heiland, Sabine |b 9 |
700 | 1 | _ | |a Bendszus, Martin |b 10 |
700 | 1 | _ | |a Hilgenfeld, Tim |b 11 |
773 | _ | _ | |a 10.1097/RLI.0000000000000940 |g Vol. Publish Ahead of Print |0 PERI:(DE-600)2041543-6 |n 5 |p 363-371 |t Investigative radiology |v 58 |y 2023 |x 0020-9996 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:241161 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-29 |
915 | _ | _ | |a Allianz-Lizenz |0 StatID:(DE-HGF)0410 |2 StatID |d 2023-10-24 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INVEST RADIOL : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INVEST RADIOL : 2022 |d 2023-10-24 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|