000265116 001__ 265116
000265116 005__ 20240229154916.0
000265116 0247_ $$2doi$$a10.1016/j.ijrobp.2023.01.048
000265116 0247_ $$2pmid$$apmid:36736634
000265116 0247_ $$2ISSN$$a0360-3016
000265116 0247_ $$2ISSN$$a1879-355X
000265116 0247_ $$2altmetric$$aaltmetric:142056975
000265116 037__ $$aDKFZ-2023-00278
000265116 041__ $$aEnglish
000265116 082__ $$a610
000265116 1001_ $$aLiu, Ruirui$$b0
000265116 245__ $$aAn Integrated Physical Optimization framework for proton SBRT FLASH treatment planning allows dose, dose rate, and LET optimization using patient-specific ridge filters.
000265116 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
000265116 3367_ $$2DRIVER$$aarticle
000265116 3367_ $$2DataCite$$aOutput Types/Journal article
000265116 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687785175_10949
000265116 3367_ $$2BibTeX$$aARTICLE
000265116 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000265116 3367_ $$00$$2EndNote$$aJournal Article
000265116 500__ $$a2023 Jul 15;116(4):949-959
000265116 520__ $$aPatient-specific ridge filters provide a passive means to modulate proton energy to obtain a conformal dose. Here we describe a new framework for optimization of filter design and spot maps to meet the unique demands of ultra-high dose rate (FLASH) radiotherapy. We demonstrate an Integrated Physical Optimization IMPT (IPO-IMPT) approach for optimization of dose, dose-averaged dose rate (DADR), and dose-averaged LET (LETd).We developed an inverse planning software to design patient-specific ridge filters that spread the Bragg peak from a fixed-energy, 250 MeV beam to a proximal beam-specific planning target volume (BSPTV). The software defines patient-specific ridge filter pin shapes and uses a Monte Carlo calculation engine, based on Geant4, to provide dose and LET influence matrices. Plan optimization, using matRAD, accommodates the IPO-IMPT objective function considering dose, dose rate, and LET simultaneously with minimum MU constraints. The framework enables design of both regularly spaced and sparse-optimized ridge filters, from which some pins are omitted to allow faster delivery and selective LET optimization. To demonstrate the framework, we designed ridge filters for three example lung cancer patients and optimized the plans using IPO-IMPT.The IPO-IMPT framework selectively spared the OARs by reducing LET and increasing dose rate, relative to IMPT planning. Sparse-optimized ridge filters were superior to regularly spaced ridge filters in dose rate. Depending on which parameter is prioritized, volume distributions and histograms for dose, DADR, and LETd, using evaluation structures specific to heart, lung and esophagus, show high levels of FLASH dose rate coverage and/or reduced LETd, while maintaining dose coverage within the BSPT.This proof-of-concept study demonstrates the feasibility of using an IPO-IMPT framework to accomplish proton FLASH stereotactic body proton therapy, accounting for dose, DADR, and LETd simultaneously.
000265116 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000265116 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000265116 650_7 $$2Other$$aFLASH
000265116 650_7 $$2Other$$aIMPT
000265116 650_7 $$2Other$$aLET
000265116 650_7 $$2Other$$aPatient-specific ridge filter
000265116 650_7 $$2Other$$aSBPT
000265116 650_7 $$2Other$$adose rate
000265116 650_7 $$2Other$$aintegrated physical optimization
000265116 650_7 $$2Other$$asparse optimized ridge filter
000265116 7001_ $$aCharyyev, Serdar$$b1
000265116 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b2$$udkfz
000265116 7001_ $$aLiu, Wei$$b3
000265116 7001_ $$aKang, Minglei$$b4
000265116 7001_ $$aZhou, Jun$$b5
000265116 7001_ $$aYang, Xiaofeng$$b6
000265116 7001_ $$0P:(DE-He78)c05a55723806b3aa6693a6c5a70c73f0$$aBaltazar, Filipa$$b7$$udkfz
000265116 7001_ $$0P:(DE-He78)cb1b81d8f77c90db6363696d26449132$$aPalkowitsch, Martina$$b8
000265116 7001_ $$aHiggins, Kristin$$b9
000265116 7001_ $$aDynan, William$$b10
000265116 7001_ $$aBradley, Jeffrey$$b11
000265116 7001_ $$aLin, Liyong$$b12
000265116 773__ $$0PERI:(DE-600)1500486-7$$a10.1016/j.ijrobp.2023.01.048$$gp. S0360301623000974$$n4$$p949-959$$tInternational journal of radiation oncology, biology, physics$$v116$$x0360-3016$$y2023
000265116 909CO $$ooai:inrepo02.dkfz.de:265116$$pVDB
000265116 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000265116 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c05a55723806b3aa6693a6c5a70c73f0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000265116 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cb1b81d8f77c90db6363696d26449132$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000265116 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000265116 9141_ $$y2023
000265116 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-17
000265116 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000265116 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000265116 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-24$$wger
000265116 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J RADIAT ONCOL : 2022$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
000265116 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J RADIAT ONCOL : 2022$$d2023-08-24
000265116 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000265116 980__ $$ajournal
000265116 980__ $$aVDB
000265116 980__ $$aI:(DE-He78)E040-20160331
000265116 980__ $$aUNRESTRICTED