001     274184
005     20240918113002.0
024 7 _ |a 10.1016/j.media.2023.102770
|2 doi
024 7 _ |a pmid:36889206
|2 pmid
024 7 _ |a 1361-8415
|2 ISSN
024 7 _ |a 1361-8431
|2 ISSN
024 7 _ |a 1361-8423
|2 ISSN
024 7 _ |a altmetric:143417154
|2 altmetric
037 _ _ |a DKFZ-2023-00479
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wagner, Martin
|b 0
245 _ _ |a Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark.
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726651782_8429
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysis up to 91% average precision has been reported for phase recognition on an open data single-center video dataset. In this work we investigated the generalizability of phase recognition algorithms in a multicenter setting including more difficult recognition tasks such as surgical action and surgical skill.To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12 research teams trained and submitted their machine learning algorithms for recognition of phase, action, instrument and/or skill assessment.F1-scores were achieved for phase recognition between 23.9% and 67.7% (n = 9 teams), for instrument presence detection between 38.5% and 63.8% (n = 8 teams), but for action recognition only between 21.8% and 23.3% (n = 5 teams). The average absolute error for skill assessment was 0.78 (n = 1 team).Surgical workflow and skill analysis are promising technologies to support the surgical team, but there is still room for improvement, as shown by our comparison of machine learning algorithms. This novel HeiChole benchmark can be used for comparable evaluation and validation of future work. In future studies, it is of utmost importance to create more open, high-quality datasets in order to allow the development of artificial intelligence and cognitive robotics in surgery.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Endoscopic vision
|2 Other
650 _ 7 |a Laparoscopic cholecystectomy
|2 Other
650 _ 7 |a Surgical data science
|2 Other
650 _ 7 |a Surgical workflow analysis
|2 Other
700 1 _ |a Müller-Stich, Beat-Peter
|b 1
700 1 _ |a Kisilenko, Anna
|b 2
700 1 _ |a Tran, Duc
|b 3
700 1 _ |a Heger, Patrick
|b 4
700 1 _ |a Mündermann, Lars
|b 5
700 1 _ |a Lubotsky, David M
|b 6
700 1 _ |a Müller, Benjamin
|b 7
700 1 _ |a Davitashvili, Tornike
|b 8
700 1 _ |a Capek, Manuela
|b 9
700 1 _ |a Reinke, Annika
|0 P:(DE-He78)97e904f47dab556a77c0149cd0002591
|b 10
700 1 _ |a Reid, Carissa
|0 P:(DE-He78)a06ba45fcf672f893e3d0946fe3f3483
|b 11
700 1 _ |a Yu, Tong
|b 12
700 1 _ |a Vardazaryan, Armine
|b 13
700 1 _ |a Nwoye, Chinedu Innocent
|b 14
700 1 _ |a Padoy, Nicolas
|b 15
700 1 _ |a Liu, Xinyang
|b 16
700 1 _ |a Lee, Eung-Joo
|b 17
700 1 _ |a Disch, Constantin
|b 18
700 1 _ |a Meine, Hans
|b 19
700 1 _ |a Xia, Tong
|b 20
700 1 _ |a Jia, Fucang
|b 21
700 1 _ |a Kondo, Satoshi
|b 22
700 1 _ |a Reiter, Wolfgang
|b 23
700 1 _ |a Jin, Yueming
|b 24
700 1 _ |a Long, Yonghao
|b 25
700 1 _ |a Jiang, Meirui
|b 26
700 1 _ |a Dou, Qi
|b 27
700 1 _ |a Heng, Pheng Ann
|b 28
700 1 _ |a Twick, Isabell
|b 29
700 1 _ |a Kirtac, Kadir
|b 30
700 1 _ |a Hosgor, Enes
|b 31
700 1 _ |a Bolmgren, Jon Lindström
|b 32
700 1 _ |a Stenzel, Michael
|b 33
700 1 _ |a von Siemens, Björn
|b 34
700 1 _ |a Zhao, Long
|b 35
700 1 _ |a Ge, Zhenxiao
|b 36
700 1 _ |a Sun, Haiming
|b 37
700 1 _ |a Xie, Di
|b 38
700 1 _ |a Guo, Mengqi
|b 39
700 1 _ |a Liu, Daochang
|b 40
700 1 _ |a Kenngott, Hannes G
|b 41
700 1 _ |a Nickel, Felix
|b 42
700 1 _ |a Frankenberg, Moritz von
|b 43
700 1 _ |a Mathis-Ullrich, Franziska
|b 44
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 45
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 46
700 1 _ |a Speidel, Stefanie
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Bodenstedt, Sebastian
|0 P:(DE-HGF)0
|b 48
773 _ _ |a 10.1016/j.media.2023.102770
|g Vol. 86, p. 102770 -
|0 PERI:(DE-600)1497450-2
|p 102770
|t Medical image analysis
|v 86
|y 2023
|x 1361-8415
909 C O |p VDB
|o oai:inrepo02.dkfz.de:274184
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)97e904f47dab556a77c0149cd0002591
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)a06ba45fcf672f893e3d0946fe3f3483
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 45
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 46
|6 P:(DE-He78)26a1176cd8450660333a012075050072
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2023
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED IMAGE ANAL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b MED IMAGE ANAL : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21