000274319 001__ 274319
000274319 005__ 20240229154930.0
000274319 0247_ $$2doi$$a10.1016/j.micres.2023.127361
000274319 0247_ $$2pmid$$apmid:36921400
000274319 0247_ $$2ISSN$$a0944-5013
000274319 0247_ $$2ISSN$$a1618-0623
000274319 037__ $$aDKFZ-2023-00533
000274319 041__ $$aEnglish
000274319 082__ $$a570
000274319 1001_ $$aVangalis, Vasileios$$b0
000274319 245__ $$aComponents of TOR and MAP kinase signaling control chemotropism and pathogenicity in the fungal pathogen Verticillium dahliae.
000274319 260__ $$aJena$$bUrban & Fischer$$c2023
000274319 3367_ $$2DRIVER$$aarticle
000274319 3367_ $$2DataCite$$aOutput Types/Journal article
000274319 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678972513_21012
000274319 3367_ $$2BibTeX$$aARTICLE
000274319 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000274319 3367_ $$00$$2EndNote$$aJournal Article
000274319 500__ $$aDKFZ-ZMBH Alliance
000274319 520__ $$aFilamentous fungi can sense useful resources and hazards in their environment and direct growth of their hyphae accordingly. Chemotropism ensures access to nutrients, contact with other individuals (e.g., for mating), and interaction with hosts in the case of pathogens. Previous studies have revealed a complex chemotropic sensing landscape during host-pathogen interactions, but the underlying molecular machinery remains poorly characterized. Here we studied mechanisms controlling directed hyphal growth of the important plant-pathogenic fungus Verticillium dahliae towards different chemoattractants. We found that the homologs of the Rag GTPase Gtr1 and the GTPase-activating protein Tsc2, an activator and a repressor of the TOR kinase respectively, play important roles in hyphal chemotropism towards nutrients, plant-derived signals, and heterologous α-pheromone of Fusarium oxysporum. Furthermore, important roles of these regulators were identified in fungal development and pathogenicity. We also found that the mitogen-activated protein kinase (MAPK) Fus3 is required for chemotropism towards nutrients, while the G protein-coupled receptor (GPCR) Ste2 and the MAPK Slt2 control chemosensing of plant-derived signals and α-pheromone. Our study establishes V. dahliae as a suitable model system for the analysis of fungal chemotropism and discovers new components of chemotropic signaling during growth and host-pathogen interactions of V. dahliae.
000274319 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000274319 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000274319 650_7 $$2Other$$aAutophagy
000274319 650_7 $$2Other$$aChemotropism
000274319 650_7 $$2Other$$aEnvironmental sensing
000274319 650_7 $$2Other$$aPathogenicity
000274319 650_7 $$2Other$$aVerticillium dahliae
000274319 650_7 $$2Other$$amTOR signaling pathway
000274319 7001_ $$aMarkakis, Emmanouil A$$b1
000274319 7001_ $$0P:(DE-He78)03ae15a30a7fa7191475148bf4e7f581$$aKnop, Michael$$b2$$udkfz
000274319 7001_ $$aPietro, Antonio Di$$b3
000274319 7001_ $$aTypas, Milton A$$b4
000274319 7001_ $$aPapaioannou, Ioannis A$$b5
000274319 773__ $$0PERI:(DE-600)2051526-1$$a10.1016/j.micres.2023.127361$$gVol. 271, p. 127361 -$$p127361$$tMicrobiological research$$v271$$x0944-5013$$y2023
000274319 909CO $$ooai:inrepo02.dkfz.de:274319$$pVDB
000274319 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)03ae15a30a7fa7191475148bf4e7f581$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000274319 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000274319 9141_ $$y2023
000274319 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-12
000274319 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000274319 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000274319 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
000274319 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROBIOL RES : 2022$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-10-24
000274319 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMICROBIOL RES : 2022$$d2023-10-24
000274319 9201_ $$0I:(DE-He78)A260-20160331$$kA260$$lA260 Zellmorphogenese und Signalübermittlung$$x0
000274319 980__ $$ajournal
000274319 980__ $$aVDB
000274319 980__ $$aI:(DE-He78)A260-20160331
000274319 980__ $$aUNRESTRICTED