001     274367
005     20240229154932.0
024 7 _ |a 10.1002/mp.16368
|2 doi
024 7 _ |a pmid:36940235
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
037 _ _ |a DKFZ-2023-00569
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Marot, Mathieu
|0 P:(DE-He78)8b9e41d8fdbc77efc053f339f24458f2
|b 0
|e First author
|u dkfz
245 _ _ |a Proton beam dosimetry in the presence of magnetic fields using Farmer-type ionization chambers of different radii.
260 _ _ |a College Park, Md.
|c 2023
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1690460040_31842
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / 2023 Jul;50(7):4590-4599
520 _ _ |a Magnetic resonance-guided proton therapy is promising, as it combines high-contrast imaging of soft tissue with highly conformal dose delivery. However, proton dosimetry in magnetic fields using ionization chambers is challenging since the dose distribution as well as the detector response are perturbed.This work investigates the effect of the magnetic field on the ionization chamber response, and on the polarity and ion recombination correction factors, which are essential for the implementation of a proton beam dosimetry protocol in the presence of magnetic fields.Three Farmer-type cylindrical ionization chambers, the 30013 with 3 mm inner radius (PTW, Freiburg, Germany) and two custom built chambers 'R1' and 'R6' with 1 and 6 mm inner radii respectively were placed at the center of an experimental electromagnet (Schwarzbeck Mess - Elektronik, Germany) 2 cm depth of an in-house developed 3D printed water phantom. The detector response was measured for a 3×10 cm2 field of mono-energetic protons 221.05 MeV/u for the three chambers, and with an additional proton beam of 157.43 MeV/u for the chamber PTW 30013. The magnetic flux density was varied between 0.1 and 1.0 Tesla in steps of 0.1 Tesla.At both energies, the ionization chamber PTW 30013 showed a non-linear response as a function of the magnetic field strength, with a decrease of the ionization chamber response of up to 0.27±0.06% (1 SD) at 0.2 Tesla, followed by a smaller effect at higher magnetic field strength. For the chamber R1, the response decreased slightly with the magnetic field strength up to 0.45±0.12% at 1 Tesla, and for the chamber R6, the response decreased up to 0.54±0.13% at 0.1 Tesla, followed by a plateau up to 0.3 Tesla, and a weaker effect at higher magnetic field strength. The dependence of the polarity and recombination correction factor on the magnetic field was ≤ $ \le $ 0.1% for the chamber PTW 30013.The magnetic field has a small but significant effect on the chamber response in the low magnetic field region for the chamber PTW 30013 and for R6, and in the high magnetic field region for the chamber R1. Corrections may be necessary for ionization chamber measurements, depending on both the chamber volume and the magnetic flux density. No significant effect of the magnetic field on the polarity and recombination correction factor was detected in this work for the ionization chamber PTW 30013. This article is protected by copyright. All rights reserved.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a MR-guided Proton therapy
|2 Other
650 _ 7 |a dosimetry
|2 Other
650 _ 7 |a ionization chamber
|2 Other
650 _ 7 |a magnetic fields
|2 Other
700 1 _ |a Surla, Sonja
|0 P:(DE-He78)864b71a86b2150818db9a144e4dec655
|b 1
|u dkfz
700 1 _ |a Burke, E.
|b 2
700 1 _ |a Brons, S.
|0 0000-0002-4695-0816
|b 3
700 1 _ |a Runz, A.
|0 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
|b 4
|u dkfz
700 1 _ |a Greilich, S.
|b 5
700 1 _ |a Karger, Christian
|0 P:(DE-He78)b43076fb0a30230e4323887c0c980046
|b 6
|u dkfz
700 1 _ |a Jäkel, Oliver
|0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
|b 7
|u dkfz
700 1 _ |a Burigo, Lucas Norberto
|0 P:(DE-He78)914adea2baeb4f2c6a29637da6500048
|b 8
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.16368
|g p. mp.16368
|0 PERI:(DE-600)1466421-5
|n 7
|p 4590-4599
|t Medical physics
|v 50
|y 2023
|x 0094-2405
909 C O |p VDB
|o oai:inrepo02.dkfz.de:274367
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)8b9e41d8fdbc77efc053f339f24458f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)864b71a86b2150818db9a144e4dec655
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)b43076fb0a30230e4323887c0c980046
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)914adea2baeb4f2c6a29637da6500048
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21