Home > Publications database > MR-Class: A Python Tool for Brain MR Image Classification Utilizing One-vs-All DCNNs to Deal with the Open-Set Recognition Problem. > print |
001 | 274490 | ||
005 | 20240229154935.0 | ||
024 | 7 | _ | |a 10.3390/cancers15061820 |2 doi |
024 | 7 | _ | |a pmid:36980707 |2 pmid |
037 | _ | _ | |a DKFZ-2023-00633 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Salome, Patrick |0 P:(DE-He78)a49f791f44268db8fc4e1e3804d46ffd |b 0 |e First author |u dkfz |
245 | _ | _ | |a MR-Class: A Python Tool for Brain MR Image Classification Utilizing One-vs-All DCNNs to Deal with the Open-Set Recognition Problem. |
260 | _ | _ | |a Basel |c 2023 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1680157676_7806 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:E210#LA:E210# |
520 | _ | _ | |a MR image classification in datasets collected from multiple sources is complicated by inconsistent and missing DICOM metadata. Therefore, we aimed to establish a method for the efficient automatic classification of MR brain sequences.Deep convolutional neural networks (DCNN) were trained as one-vs-all classifiers to differentiate between six classes: T1 weighted (w), contrast-enhanced T1w, T2w, T2w-FLAIR, ADC, and SWI. Each classifier yields a probability, allowing threshold-based and relative probability assignment while excluding images with low probability (label: unknown, open-set recognition problem). Data from three high-grade glioma (HGG) cohorts was assessed; C1 (320 patients, 20,101 MRI images) was used for training, while C2 (197, 11,333) and C3 (256, 3522) were for testing. Two raters manually checked images through an interactive labeling tool. Finally, MR-Class' added value was evaluated via radiomics model performance for progression-free survival (PFS) prediction in C2, utilizing the concordance index (C-I).Approximately 10% of annotation errors were observed in each cohort between the DICOM series descriptions and the derived labels. MR-Class accuracy was 96.7% [95% Cl: 95.8, 97.3] for C2 and 94.4% [93.6, 96.1] for C3. A total of 620 images were misclassified; manual assessment of those frequently showed motion artifacts or alterations of anatomy by large tumors. Implementation of MR-Class increased the PFS model C-I by 14.6% on average, compared to a model trained without MR-Class.We provide a DCNN-based method for the sequence classification of brain MR images and demonstrate its usability in two independent HGG datasets. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a artificial intelligence (AI) |2 Other |
650 | _ | 7 | |a content-based image classification |2 Other |
650 | _ | 7 | |a convolutional neural networks (CNN) |2 Other |
650 | _ | 7 | |a data curation and preparation |2 Other |
650 | _ | 7 | |a deep learning |2 Other |
700 | 1 | _ | |a Sforazzini, Francesco |0 P:(DE-He78)79918c052ca39dd75a283e1a6e50a521 |b 1 |u dkfz |
700 | 1 | _ | |a Grugnara, Gianluca |b 2 |
700 | 1 | _ | |a Kudak, Andreas |0 P:(DE-He78)a3cba63a64575c64aa367077f673531d |b 3 |u dkfz |
700 | 1 | _ | |a Dostal, Matthias |0 P:(DE-He78)ff409202a238e135952100d1c56c9c36 |b 4 |u dkfz |
700 | 1 | _ | |a Herold-Mende, Christel |b 5 |
700 | 1 | _ | |a Heiland, Sabine |b 6 |
700 | 1 | _ | |a Debus, Jürgen |0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218 |b 7 |u dkfz |
700 | 1 | _ | |a Abdollahi, Amir |0 P:(DE-He78)360c5bc2b71a849e35aca747c041dda7 |b 8 |u dkfz |
700 | 1 | _ | |a Knoll, Maximilian |0 P:(DE-He78)34ad9f967b71b1438cf5490a115c02d2 |b 9 |e Last author |u dkfz |
773 | _ | _ | |a 10.3390/cancers15061820 |g Vol. 15, no. 6, p. 1820 - |0 PERI:(DE-600)2527080-1 |n 6 |p 1820 |t Cancers |v 15 |y 2023 |x 2072-6694 |
909 | C | O | |o oai:inrepo02.dkfz.de:274490 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)a49f791f44268db8fc4e1e3804d46ffd |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)79918c052ca39dd75a283e1a6e50a521 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)a3cba63a64575c64aa367077f673531d |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)ff409202a238e135952100d1c56c9c36 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)360c5bc2b71a849e35aca747c041dda7 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)34ad9f967b71b1438cf5490a115c02d2 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2022-01-24T07:56:58Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-30 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CANCERS : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CANCERS : 2022 |d 2023-10-26 |
920 | 2 | _ | |0 I:(DE-He78)E210-20160331 |k E210 |l E210 KKE Translationale Radioonkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E210-20160331 |k E210 |l E210 KKE Translationale Radioonkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
920 | 1 | _ | |0 I:(DE-He78)E050-20160331 |k E050 |l E050 KKE Strahlentherapie |x 2 |
920 | 0 | _ | |0 I:(DE-He78)E210-20160331 |k E210 |l E210 KKE Translationale Radioonkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E210-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)E050-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|