000275343 001__ 275343
000275343 005__ 20240229154939.0
000275343 0247_ $$2doi$$a10.1038/s42255-023-00781-3
000275343 0247_ $$2pmid$$apmid:37024754
000275343 0247_ $$2altmetric$$aaltmetric:145110678
000275343 037__ $$aDKFZ-2023-00712
000275343 041__ $$aEnglish
000275343 082__ $$a610
000275343 1001_ $$0P:(DE-He78)290f7b71b45035214574625eccde4d08$$aTalwar, Deepti$$b0$$eFirst author$$udkfz
000275343 245__ $$aThe GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells.
000275343 260__ $$a[London]$$bSpringer Nature$$c2023
000275343 3367_ $$2DRIVER$$aarticle
000275343 3367_ $$2DataCite$$aOutput Types/Journal article
000275343 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692022207_20937
000275343 3367_ $$2BibTeX$$aARTICLE
000275343 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000275343 3367_ $$00$$2EndNote$$aJournal Article
000275343 500__ $$aDKFZ-ZMBH Alliance / 2023 Apr;5(4):660-676 / #EA:A160#LA:A160#
000275343 520__ $$aGlyceraldehyde 3-phosphate dehydrogenase (GAPDH) is known to contain an active-site cysteine residue undergoing oxidation in response to hydrogen peroxide, leading to rapid inactivation of the enzyme. Here we show that human and mouse cells expressing a GAPDH mutant lacking this redox switch retain catalytic activity but are unable to stimulate the oxidative pentose phosphate pathway and enhance their reductive capacity. Specifically, we find that anchorage-independent growth of cells and spheroids is limited by an elevation of endogenous peroxide levels and is largely dependent on a functional GAPDH redox switch. Likewise, tumour growth in vivo is limited by peroxide stress and suppressed when the GAPDH redox switch is disabled in tumour cells. The induction of additional intratumoural oxidative stress by chemo- or radiotherapy synergized with the deactivation of the GAPDH redox switch. Mice lacking the GAPDH redox switch exhibit altered fatty acid metabolism in kidney and heart, apparently in compensation for the lack of the redox switch. Together, our findings demonstrate the physiological and pathophysiological relevance of oxidative GAPDH inactivation in mammals.
000275343 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000275343 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000275343 7001_ $$0P:(DE-He78)eb748bd61964bae06c38c8893b52bcfd$$aMiller, Colin Gregory$$b1$$eFirst author$$udkfz
000275343 7001_ $$00009-0002-7094-1888$$aGrossmann, Justus$$b2
000275343 7001_ $$00000-0003-1983-2950$$aSzyrwiel, Lukasz$$b3
000275343 7001_ $$aSchwecke, Torsten$$b4
000275343 7001_ $$aDemichev, Vadim$$b5
000275343 7001_ $$0P:(DE-He78)7497b1427e6dd93688642d946fbaee12$$aMikecin Drazic, Ana-Matea$$b6
000275343 7001_ $$0P:(DE-HGF)0$$aMayakonda, Anand$$b7
000275343 7001_ $$0P:(DE-He78)ff1677c63392be9b31a1c8d23db7c9dc$$aLutsik, Pavlo$$b8$$udkfz
000275343 7001_ $$0P:(DE-He78)7583d0eaa7d0cc360d4aabfc85dd00cd$$aVeith, Carmen$$b9
000275343 7001_ $$0P:(DE-He78)7b613cadb8c16ce178713e15b85d982c$$aMilsom, Michael$$b10$$udkfz
000275343 7001_ $$0P:(DE-He78)799d978330dff449f8244947929a4518$$aMüller-Decker, Karin$$b11$$udkfz
000275343 7001_ $$00000-0001-9792-3861$$aMülleder, Michael$$b12
000275343 7001_ $$00000-0001-9535-7413$$aRalser, Markus$$b13
000275343 7001_ $$0P:(DE-He78)7f55a0ed8b021080de00960cc73768fb$$aDick, Tobias$$b14$$eLast author$$udkfz
000275343 773__ $$0PERI:(DE-600)2933873-6$$a10.1038/s42255-023-00781-3$$n4$$p660-676$$tNature metabolism$$v5$$x2522-5812$$y2023
000275343 909CO $$ooai:inrepo02.dkfz.de:275343$$pVDB
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)290f7b71b45035214574625eccde4d08$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)eb748bd61964bae06c38c8893b52bcfd$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7497b1427e6dd93688642d946fbaee12$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ff1677c63392be9b31a1c8d23db7c9dc$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7583d0eaa7d0cc360d4aabfc85dd00cd$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7b613cadb8c16ce178713e15b85d982c$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)799d978330dff449f8244947929a4518$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000275343 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7f55a0ed8b021080de00960cc73768fb$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000275343 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000275343 9141_ $$y2023
000275343 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-03-31$$wger
000275343 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-31
000275343 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-31
000275343 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-31
000275343 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT METAB : 2022$$d2023-08-19
000275343 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000275343 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
000275343 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000275343 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-19
000275343 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000275343 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-19
000275343 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT METAB : 2022$$d2023-08-19
000275343 9202_ $$0I:(DE-He78)A160-20160331$$kA160$$lA160 Redoxregulation$$x0
000275343 9201_ $$0I:(DE-He78)A160-20160331$$kA160$$lA160 Redoxregulation$$x0
000275343 9201_ $$0I:(DE-He78)A012-20160331$$kA012$$lA012 Experimentelle Hämatologie$$x1
000275343 9201_ $$0I:(DE-He78)B370-20160331$$kB370$$lEpigenomik$$x2
000275343 9201_ $$0I:(DE-He78)W420-20160331$$kW420$$lGruppe Müller-Decker$$x3
000275343 9200_ $$0I:(DE-He78)A160-20160331$$kA160$$lA160 Redoxregulation$$x0
000275343 980__ $$ajournal
000275343 980__ $$aVDB
000275343 980__ $$aI:(DE-He78)A160-20160331
000275343 980__ $$aI:(DE-He78)A012-20160331
000275343 980__ $$aI:(DE-He78)B370-20160331
000275343 980__ $$aI:(DE-He78)W420-20160331
000275343 980__ $$aUNRESTRICTED