001     275423
005     20240229154940.0
024 7 _ |a 10.1097/HEP.0000000000000407
|2 doi
024 7 _ |a pmid:37055018
|2 pmid
024 7 _ |a 0270-9139
|2 ISSN
024 7 _ |a 1527-3350
|2 ISSN
024 7 _ |a altmetric:145743531
|2 altmetric
037 _ _ |a DKFZ-2023-00746
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a De Angelis Rigotti, Francesca
|0 P:(DE-He78)95d56cbcb8b1bb5783526d136049e3df
|b 0
|e First author
245 _ _ |a Semaphorin 3C exacerbates liver fibrosis.
260 _ _ |a New York [u.a.]
|c 2023
|b Wiley Interscience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697800767_29654
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A270#LA:A270# / 2023 Oct 1;78(4):1092-1105
520 _ _ |a Chronic liver disease is a growing epidemic, leading to fibrosis and cirrhosis. TGF-β is the pivotal pro-fibrogenic cytokine which activates hepatic stellate cells (HSC), yet, other molecules can modulate TGF-β signaling during liver fibrosis. Expression of the axon guidance molecules Semaphorins (SEMAs), which signal through Plexins and Neuropilins (NRPs), have been associated with liver fibrosis in HBV-induced chronic hepatitis. This study aims at determining their function in the regulation of HSCs. We analyzed publicly available patient databases and liver biopsies. We employed transgenic mice, in which genes are deleted only in activated HSCs to perform ex vivo analysis and animal models. SEMA3C is the most enriched member of the Semaphorin family in liver samples from cirrhotic patients. Higher expression of SEMA3C in patients with NASH, alcoholic hepatitis or HBV-induced hepatitis discriminates those with a more pro-fibrotic transcriptomic profile. SEMA3C expression is also elevated in different mouse models of liver fibrosis and in isolated HSCs upon activation. In keeping with this, deletion of SEMA3C in activated HSCs reduces myofibroblast marker expression. Conversely, SEMA3C overexpression exacerbates TGF-β-mediated myofibroblast activation, as shown by increased SMAD2 phosphorylation and target gene expression. Among SEMA3C receptors, only NRP2 expression is maintained upon activation of isolated HSCs. Interestingly, lack of NRP2 in those cells reduces myofibroblast marker expression. Finally, deletion of either SEMA3C or NRP2, specifically in activated HSCs, reduces liver fibrosis in mice. SEMA3C is a novel marker for activated HSCs that plays a fundamental role in the acquisition of the myofibroblastic phenotype and liver fibrosis.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Wiedmann, Lena
|0 P:(DE-He78)b27922c32bcdf07ca4d5f13ecdcfd100
|b 1
|u dkfz
700 1 _ |a Hubert, Max Ole
|0 P:(DE-He78)c82d29f0b0709897fbdf50c5aa907d94
|b 2
700 1 _ |a Vacca, Margherita
|0 P:(DE-He78)db0b2f396de01b200ce18462ab29fdbc
|b 3
700 1 _ |a Hasan, Sana S
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Moll, Iris
|0 P:(DE-He78)68d90eb013f51c689f9ebea83a920858
|b 5
|u dkfz
700 1 _ |a Carvajal, Silvia
|b 6
700 1 _ |a Jiménez, Wladimiro
|b 7
700 1 _ |a Starostecka, Maja
|0 P:(DE-He78)ab745a01a81217d94e152f2c7a815a20
|b 8
700 1 _ |a Billeter, Adrian T
|b 9
700 1 _ |a Müller-Stich, Beat
|b 10
700 1 _ |a Wolff, Gretchen
|b 11
700 1 _ |a Ekim-Üstünel, Bilgen
|b 12
700 1 _ |a Herzig, Stephan
|b 13
700 1 _ |a Fandos-Ramo, Cristina
|b 14
700 1 _ |a Krätzner, Ralph
|b 15
700 1 _ |a Reich, Maria
|b 16
700 1 _ |a Keitel-Anselmino, Verena
|b 17
700 1 _ |a Heikenwälder, Mathias
|0 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
|b 18
|u dkfz
700 1 _ |a Mogler, Carolin
|b 19
700 1 _ |a Fischer, Andreas
|b 20
700 1 _ |a Rodriguez-Vita, Juan
|0 P:(DE-HGF)0
|b 21
|e Last author
773 _ _ |a 10.1097/HEP.0000000000000407
|g Vol. Publish Ahead of Print
|0 PERI:(DE-600)1472120-X
|n 4
|p 1092-1105
|t Hepatology
|v 78
|y 2023
|x 0270-9139
909 C O |p VDB
|o oai:inrepo02.dkfz.de:275423
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)95d56cbcb8b1bb5783526d136049e3df
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)b27922c32bcdf07ca4d5f13ecdcfd100
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c82d29f0b0709897fbdf50c5aa907d94
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)db0b2f396de01b200ce18462ab29fdbc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)68d90eb013f51c689f9ebea83a920858
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)ab745a01a81217d94e152f2c7a815a20
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-19
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HEPATOLOGY : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-22
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b HEPATOLOGY : 2022
|d 2023-08-22
920 2 _ |0 I:(DE-He78)A270-20160331
|k A270
|l A270 Vaskuläre Signaltransduktion und Krebs
|x 0
920 1 _ |0 I:(DE-He78)A270-20160331
|k A270
|l A270 Vaskuläre Signaltransduktion und Krebs
|x 0
920 1 _ |0 I:(DE-He78)F180-20160331
|k F180
|l F180 Chronische Entzündung und Krebs
|x 1
920 0 _ |0 I:(DE-He78)A270-20160331
|k A270
|l A270 Vaskuläre Signaltransduktion und Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A270-20160331
980 _ _ |a I:(DE-He78)F180-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21