001     275602
005     20240229154943.0
024 7 _ |a 10.1007/s00401-023-02575-z
|2 doi
024 7 _ |a pmid:37093271
|2 pmid
024 7 _ |a 0001-6322
|2 ISSN
024 7 _ |a 1432-0533
|2 ISSN
024 7 _ |a altmetric:146489672
|2 altmetric
037 _ _ |a DKFZ-2023-00812
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Korshunov, Andrey
|0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|b 0
|e First author
|u dkfz
245 _ _ |a Transcriptome analysis stratifies second-generation non-WNT/non-SHH medulloblastoma subgroups into clinically tractable subtypes.
260 _ _ |a Heidelberg
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1685017185_26040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B300#LA:B062# / 2023 Jun;145(6):829-842
520 _ _ |a Medulloblastoma (MB), one of the most common malignant pediatric brain tumor, is a heterogenous disease comprised of four distinct molecular groups (WNT, SHH, Group 3, Group 4). Each of these groups can be further subdivided into second-generation MB (SGS MB) molecular subgroups, each with distinct genetic and clinical characteristics. For instance, non-WNT/non-SHH MB (Group 3/4) can be subdivided molecularly into eight distinct and clinically relevant tumor subgroups. A further molecular stratification/summarization of these SGS MB would allow for the assignment of patients to risk-associated treatment protocols. Here, we performed DNA- and RNA-based analysis of 574 non-WNT/non-SHH MB and analyzed the clinical significance of various molecular patterns within the entire cohort and the eight SGS MB, with the aim to develop an optimal risk stratification of these tumors. Multigene analysis disclosed several survival-associated genes highly specific for each molecular subgroup within this non-WNT/non-SHH MB cohort with minimal inter-subgroup overlap. These subgroup-specific and prognostically relevant genes were associated with pathways that could underlie SGS MB clinical-molecular diversity and tumor-driving mechanisms. By combining survival-associated genes within each SGS MB, distinct metagene sets being appropriate for their optimal risk stratification were identified. Defined subgroup-specific metagene sets were independent variables in the multivariate models generated for each SGS MB and their prognostic value was confirmed in a completely non-overlapping validation cohort of non-WNT/non-SHH MB (n = 377). In summary, the current results indicate that the integration of transcriptome data in risk stratification models may improve outcome prediction for each non-WNT/non-SHH SGS MB. Identified subgroup-specific gene expression signatures could be relevant for clinical implementation and survival-associated metagene sets could be adopted for further SGS MB risk stratification. Future studies should aim at validating the prognostic role of these transcriptome-based SGS MB subtypes in prospective clinical trials.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Medulloblastoma
|2 Other
650 _ 7 |a Non-WNT/non-SHH
|2 Other
650 _ 7 |a Prognosis
|2 Other
650 _ 7 |a Subgroups
|2 Other
650 _ 7 |a Transcriptomic
|2 Other
700 1 _ |a Okonechnikov, Konstantin
|0 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
|b 1
|u dkfz
700 1 _ |a Schrimpf, Daniel
|0 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
|b 2
|u dkfz
700 1 _ |a Tonn, Svenja
|b 3
700 1 _ |a Mynarek, Martin
|b 4
700 1 _ |a Koster, Jan
|b 5
700 1 _ |a Sievers, Philipp
|0 P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6
|b 6
|u dkfz
700 1 _ |a Milde, Till
|0 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
|b 7
|u dkfz
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 8
|u dkfz
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 9
|u dkfz
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 10
|u dkfz
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 11
|u dkfz
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 12
|e Last author
|u dkfz
773 _ _ |a 10.1007/s00401-023-02575-z
|0 PERI:(DE-600)1458410-4
|n 6
|p 829-842
|t Acta neuropathologica
|v 145
|y 2023
|x 0001-6322
909 C O |p VDB
|o oai:inrepo02.dkfz.de:275602
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-29
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACTA NEUROPATHOL : 2022
|d 2023-10-21
920 2 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 2
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pediatric Glioma
|x 3
920 1 _ |0 I:(DE-He78)B310-20160331
|k B310
|l KKE Pädiatrische Onkologie
|x 4
920 0 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)B310-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21