001     275609
005     20240229154943.0
024 7 _ |a 10.1002/cam4.5896
|2 doi
024 7 _ |a pmid:37096432
|2 pmid
024 7 _ |a altmetric:146534517
|2 altmetric
037 _ _ |a DKFZ-2023-00815
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Mahamat-Saleh, Y.
|0 0000-0002-5892-8886
|b 0
245 _ _ |a Metabolically defined body size and body shape phenotypes and risk of postmenopausal breast cancer in the European Prospective Investigation into Cancer and Nutrition.
260 _ _ |a Hoboken, NJ
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687349954_6283
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2023 Jun;12(11):12668-12682
520 _ _ |a Excess body fatness and hyperinsulinemia are both associated with an increased risk of postmenopausal breast cancer. However, whether women with high body fatness but normal insulin levels or those with normal body fatness and high levels of insulin are at elevated risk of breast cancer is not known. We investigated the associations of metabolically defined body size and shape phenotypes with the risk of postmenopausal breast cancer in a nested case-control study within the European Prospective Investigation into Cancer and Nutrition.Concentrations of C-peptide-a marker for insulin secretion-were measured at inclusion prior to cancer diagnosis in serum from 610 incident postmenopausal breast cancer cases and 1130 matched controls. C-peptide concentrations among the control participants were used to define metabolically healthy (MH; in first tertile) and metabolically unhealthy (MU; >1st tertile) status. We created four metabolic health/body size phenotype categories by combining the metabolic health definitions with normal weight (NW; BMI < 25 kg/m2 , or WC < 80 cm, or WHR < 0.8) and overweight or obese (OW/OB; BMI ≥ 25 kg/m2 , or WC ≥ 80 cm, or WHR ≥ 0.8) status for each of the three anthropometric measures separately: (1) MHNW, (2) MHOW/OB, (3) MUNW, and (4) MUOW/OB. Conditional logistic regression was used to compute odds ratios (ORs) and 95% confidence intervals (CIs).Women classified as MUOW/OB were at higher risk of postmenopausal breast cancer compared to MHNW women considering BMI (OR = 1.58, 95% CI = 1.14-2.19) and WC (OR = 1.51, 95% CI = 1.09-2.08) cut points and there was also a suggestive increased risk for the WHR (OR = 1.29, 95% CI = 0.94-1.77) definition. Conversely, women with the MHOW/OB and MUNW were not at statistically significant elevated risk of postmenopausal breast cancer risk compared to MHNW women.These findings suggest that being overweight or obese and metabolically unhealthy raises risk of postmenopausal breast cancer while overweight or obese women with normal insulin levels are not at higher risk. Additional research should consider the combined utility of anthropometric measures with metabolic parameters in predicting breast cancer risk.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a body mass index
|2 Other
650 _ 7 |a breast cancer
|2 Other
650 _ 7 |a concentrations of C-peptide
|2 Other
650 _ 7 |a metabolic health
|2 Other
650 _ 7 |a waist circumference
|2 Other
650 _ 7 |a waist-to-hip ratio
|2 Other
700 1 _ |a Rinaldi, S.
|0 0000-0002-6846-1204
|b 1
700 1 _ |a Kaaks, R.
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 2
|u dkfz
700 1 _ |a Biessy, C.
|b 3
700 1 _ |a Gonzalez-Gil, E. M.
|b 4
700 1 _ |a Murphy, N.
|b 5
700 1 _ |a Le Cornet, Charlotte
|0 P:(DE-He78)2d4cac0f4bf270325b98fe07036dc6c6
|b 6
|u dkfz
700 1 _ |a Huerta, J. M.
|0 0000-0002-9637-3869
|b 7
700 1 _ |a Sieri, S.
|b 8
700 1 _ |a Tjønneland, A.
|b 9
700 1 _ |a Mellemkjaer, L.
|0 0000-0001-9222-6215
|b 10
700 1 _ |a Guevara, M.
|b 11
700 1 _ |a Overvad, K.
|b 12
700 1 _ |a Perez-Cornago, A.
|0 0000-0002-5652-356X
|b 13
700 1 _ |a Tin Tin, S.
|0 0000-0002-7303-061X
|b 14
700 1 _ |a Padroni, L.
|b 15
700 1 _ |a Simeon, V.
|b 16
700 1 _ |a Masala, G.
|b 17
700 1 _ |a May, A.
|b 18
700 1 _ |a Monninkhof, E.
|b 19
700 1 _ |a Christakoudi, S.
|0 0000-0001-9219-4436
|b 20
700 1 _ |a Heath, A. K.
|0 0000-0001-6517-1300
|b 21
700 1 _ |a Tsilidis, K.
|0 0000-0002-8452-8472
|b 22
700 1 _ |a Agudo, A.
|b 23
700 1 _ |a Schulze, M. B.
|b 24
700 1 _ |a Rothwell, J.
|b 25
700 1 _ |a Cadeau, C.
|b 26
700 1 _ |a Severi, S.
|0 0000-0001-7157-419X
|b 27
700 1 _ |a Weiderpass, E.
|0 0000-0003-2237-0128
|b 28
700 1 _ |a Gunter, M. J.
|b 29
700 1 _ |a Dossus, L.
|b 30
773 _ _ |a 10.1002/cam4.5896
|g p. cam4.5896
|0 PERI:(DE-600)2659751-2
|n 11
|p 12668-12682
|t Cancer medicine
|v 12
|y 2023
|x 2045-7634
909 C O |p VDB
|o oai:inrepo02.dkfz.de:275609
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)2d4cac0f4bf270325b98fe07036dc6c6
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-16T15:13:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-16T15:13:13Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-04-16T15:13:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER MED-US : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double anonymous peer review
|d 2021-04-16T15:13:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21