000275656 001__ 275656
000275656 005__ 20240229154945.0
000275656 0247_ $$2doi$$a10.3390/pathogens12040607
000275656 0247_ $$2pmid$$apmid:37111493
000275656 037__ $$aDKFZ-2023-00844
000275656 041__ $$aEnglish
000275656 082__ $$a610
000275656 1001_ $$0P:(DE-He78)34bd069ab74ead9ac824c1e0896ecbf0$$aAngelova, Assia Ludmilova$$b0$$eFirst author$$udkfz
000275656 245__ $$aOncolytic Rodent Protoparvoviruses Evade a TLR- and RLR-Independent Antiviral Response in Transformed Cells.
000275656 260__ $$aBasel$$bMDPI$$c2023
000275656 3367_ $$2DRIVER$$aarticle
000275656 3367_ $$2DataCite$$aOutput Types/Journal article
000275656 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682692647_9446
000275656 3367_ $$2BibTeX$$aARTICLE
000275656 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000275656 3367_ $$00$$2EndNote$$aJournal Article
000275656 500__ $$a#EA:F230#
000275656 520__ $$aThe oncolytic rodent protoparvoviruses (PVs) minute virus of mice (MVMp) and H-1 parvovirus (H-1PV) are promising cancer viro-immunotherapy candidates capable of both exhibiting direct oncolytic activities and inducing anticancer immune responses (AIRs). Type-I interferon (IFN) production is instrumental for the activation of an efficient AIR. The present study aims at characterizing the molecular mechanisms underlying PV modulation of IFN induction in host cells. MVMp and H-1PV triggered IFN production in semi-permissive normal mouse embryonic fibroblasts (MEFs) and human peripheral blood mononuclear cells (PBMCs), but not in permissive transformed/tumor cells. IFN production triggered by MVMp in primary MEFs required PV replication and was independent of the pattern recognition receptors (PRRs) Toll-like (TLR) and RIG-like (RLR) receptors. PV infection of (semi-)permissive cells, whether transformed or not, led to nuclear translocation of the transcription factors NFĸB and IRF3, hallmarks of PRR signaling activation. Further evidence showed that PV replication in (semi-)permissive cells resulted in nuclear accumulation of dsRNAs capable of activating mitochondrial antiviral signaling (MAVS)-dependent cytosolic RLR signaling upon transfection into naïve cells. This PRR signaling was aborted in PV-infected neoplastic cells, in which no IFN production was detected. Furthermore, MEF immortalization was sufficient to strongly reduce PV-induced IFN production. Pre-infection of transformed/tumor but not of normal cells with MVMp or H-1PV prevented IFN production by classical RLR ligands. Altogether, our data indicate that natural rodent PVs regulate the antiviral innate immune machinery in infected host cells through a complex mechanism. In particular, while rodent PV replication in (semi-)permissive cells engages a TLR-/RLR-independent PRR pathway, in transformed/tumor cells this process is arrested prior to IFN production. This virus-triggered evasion mechanism involves a viral factor(s), which exert(s) an inhibitory action on IFN production, particularly in transformed/tumor cells. These findings pave the way for the development of second-generation PVs that are defective in this evasion mechanism and therefore endowed with increased immunostimulatory potential through their ability to induce IFN production in infected tumor cells.
000275656 536__ $$0G:(DE-HGF)POF4-316$$a316 - Infektionen, Entzündung und Krebs (POF4-316)$$cPOF4-316$$fPOF IV$$x0
000275656 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000275656 650_7 $$2Other$$acancer cells
000275656 650_7 $$2Other$$ainnate immune response
000275656 650_7 $$2Other$$ainnate immune response evasion mechanism
000275656 650_7 $$2Other$$aoncolytic
000275656 650_7 $$2Other$$aparvovirus
000275656 650_7 $$2Other$$atype-I interferons
000275656 7001_ $$0P:(DE-HGF)0$$aPierrard, Kristina$$b1
000275656 7001_ $$aDetje, Claudia N$$b2
000275656 7001_ $$aSantiago, Estelle$$b3
000275656 7001_ $$0P:(DE-He78)39c2b4b32f9bb19e30cdf4f30020fb63$$aGrewenig, Annabel$$b4$$udkfz
000275656 7001_ $$0P:(DE-He78)62d0450145ab2c10a48770d80d83b1f4$$aNüesch, Jürg$$b5$$udkfz
000275656 7001_ $$aKalinke, Ulrich$$b6
000275656 7001_ $$0P:(DE-He78)833f90e2abdd29594ad5c4f08600f191$$aUngerechts, Guy$$b7$$udkfz
000275656 7001_ $$0P:(DE-He78)2d7958ea507b0b738619074b38ec6d54$$aRommelaere, Jean$$b8$$udkfz
000275656 7001_ $$aDaeffler, Laurent$$b9
000275656 773__ $$0PERI:(DE-600)2695572-6$$a10.3390/pathogens12040607$$gVol. 12, no. 4, p. 607 -$$n4$$p607$$tPathogens$$v12$$x2076-0817$$y2023
000275656 909CO $$ooai:inrepo02.dkfz.de:275656$$pVDB
000275656 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)34bd069ab74ead9ac824c1e0896ecbf0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000275656 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000275656 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)39c2b4b32f9bb19e30cdf4f30020fb63$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000275656 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)62d0450145ab2c10a48770d80d83b1f4$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000275656 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)833f90e2abdd29594ad5c4f08600f191$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000275656 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2d7958ea507b0b738619074b38ec6d54$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000275656 9131_ $$0G:(DE-HGF)POF4-316$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vInfektionen, Entzündung und Krebs$$x0
000275656 9141_ $$y2023
000275656 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-24T11:01:46Z
000275656 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-17
000275656 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000275656 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000275656 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-17
000275656 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-17
000275656 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPATHOGENS : 2022$$d2023-10-26
000275656 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000275656 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000275656 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000275656 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:22Z
000275656 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:22Z
000275656 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:22Z
000275656 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000275656 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000275656 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000275656 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
000275656 9201_ $$0I:(DE-He78)F230-20160331$$kF230$$lKKE Virotherapie$$x0
000275656 9201_ $$0I:(DE-He78)F030-20160331$$kF030$$lF030 Virale Transformationsmechanismen$$x1
000275656 9201_ $$0I:(DE-He78)F160-20160331$$kF160$$lF160 DNA-Vektoren$$x2
000275656 9201_ $$0I:(DE-He78)F170-20160331$$kF170$$lF170 Virus-assoziierte Karzinogenese$$x3
000275656 9200_ $$0I:(DE-He78)F230-20160331$$kF230$$lKKE Virotherapie$$x0
000275656 980__ $$ajournal
000275656 980__ $$aVDB
000275656 980__ $$aI:(DE-He78)F230-20160331
000275656 980__ $$aI:(DE-He78)F030-20160331
000275656 980__ $$aI:(DE-He78)F160-20160331
000275656 980__ $$aI:(DE-He78)F170-20160331
000275656 980__ $$aUNRESTRICTED