001     275656
005     20240229154945.0
024 7 _ |a 10.3390/pathogens12040607
|2 doi
024 7 _ |a pmid:37111493
|2 pmid
037 _ _ |a DKFZ-2023-00844
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Angelova, Assia Ludmilova
|0 P:(DE-He78)34bd069ab74ead9ac824c1e0896ecbf0
|b 0
|e First author
|u dkfz
245 _ _ |a Oncolytic Rodent Protoparvoviruses Evade a TLR- and RLR-Independent Antiviral Response in Transformed Cells.
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1682692647_9446
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:F230#
520 _ _ |a The oncolytic rodent protoparvoviruses (PVs) minute virus of mice (MVMp) and H-1 parvovirus (H-1PV) are promising cancer viro-immunotherapy candidates capable of both exhibiting direct oncolytic activities and inducing anticancer immune responses (AIRs). Type-I interferon (IFN) production is instrumental for the activation of an efficient AIR. The present study aims at characterizing the molecular mechanisms underlying PV modulation of IFN induction in host cells. MVMp and H-1PV triggered IFN production in semi-permissive normal mouse embryonic fibroblasts (MEFs) and human peripheral blood mononuclear cells (PBMCs), but not in permissive transformed/tumor cells. IFN production triggered by MVMp in primary MEFs required PV replication and was independent of the pattern recognition receptors (PRRs) Toll-like (TLR) and RIG-like (RLR) receptors. PV infection of (semi-)permissive cells, whether transformed or not, led to nuclear translocation of the transcription factors NFĸB and IRF3, hallmarks of PRR signaling activation. Further evidence showed that PV replication in (semi-)permissive cells resulted in nuclear accumulation of dsRNAs capable of activating mitochondrial antiviral signaling (MAVS)-dependent cytosolic RLR signaling upon transfection into naïve cells. This PRR signaling was aborted in PV-infected neoplastic cells, in which no IFN production was detected. Furthermore, MEF immortalization was sufficient to strongly reduce PV-induced IFN production. Pre-infection of transformed/tumor but not of normal cells with MVMp or H-1PV prevented IFN production by classical RLR ligands. Altogether, our data indicate that natural rodent PVs regulate the antiviral innate immune machinery in infected host cells through a complex mechanism. In particular, while rodent PV replication in (semi-)permissive cells engages a TLR-/RLR-independent PRR pathway, in transformed/tumor cells this process is arrested prior to IFN production. This virus-triggered evasion mechanism involves a viral factor(s), which exert(s) an inhibitory action on IFN production, particularly in transformed/tumor cells. These findings pave the way for the development of second-generation PVs that are defective in this evasion mechanism and therefore endowed with increased immunostimulatory potential through their ability to induce IFN production in infected tumor cells.
536 _ _ |a 316 - Infektionen, Entzündung und Krebs (POF4-316)
|0 G:(DE-HGF)POF4-316
|c POF4-316
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a cancer cells
|2 Other
650 _ 7 |a innate immune response
|2 Other
650 _ 7 |a innate immune response evasion mechanism
|2 Other
650 _ 7 |a oncolytic
|2 Other
650 _ 7 |a parvovirus
|2 Other
650 _ 7 |a type-I interferons
|2 Other
700 1 _ |a Pierrard, Kristina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Detje, Claudia N
|b 2
700 1 _ |a Santiago, Estelle
|b 3
700 1 _ |a Grewenig, Annabel
|0 P:(DE-He78)39c2b4b32f9bb19e30cdf4f30020fb63
|b 4
|u dkfz
700 1 _ |a Nüesch, Jürg
|0 P:(DE-He78)62d0450145ab2c10a48770d80d83b1f4
|b 5
|u dkfz
700 1 _ |a Kalinke, Ulrich
|b 6
700 1 _ |a Ungerechts, Guy
|0 P:(DE-He78)833f90e2abdd29594ad5c4f08600f191
|b 7
|u dkfz
700 1 _ |a Rommelaere, Jean
|0 P:(DE-He78)2d7958ea507b0b738619074b38ec6d54
|b 8
|u dkfz
700 1 _ |a Daeffler, Laurent
|b 9
773 _ _ |a 10.3390/pathogens12040607
|g Vol. 12, no. 4, p. 607 -
|0 PERI:(DE-600)2695572-6
|n 4
|p 607
|t Pathogens
|v 12
|y 2023
|x 2076-0817
909 C O |o oai:inrepo02.dkfz.de:275656
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)34bd069ab74ead9ac824c1e0896ecbf0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)39c2b4b32f9bb19e30cdf4f30020fb63
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)62d0450145ab2c10a48770d80d83b1f4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)833f90e2abdd29594ad5c4f08600f191
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)2d7958ea507b0b738619074b38ec6d54
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-316
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Infektionen, Entzündung und Krebs
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-08-24T11:01:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-17
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PATHOGENS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:01:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:01:22Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:01:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-He78)F230-20160331
|k F230
|l KKE Virotherapie
|x 0
920 1 _ |0 I:(DE-He78)F030-20160331
|k F030
|l F030 Virale Transformationsmechanismen
|x 1
920 1 _ |0 I:(DE-He78)F160-20160331
|k F160
|l F160 DNA-Vektoren
|x 2
920 1 _ |0 I:(DE-He78)F170-20160331
|k F170
|l F170 Virus-assoziierte Karzinogenese
|x 3
920 0 _ |0 I:(DE-He78)F230-20160331
|k F230
|l KKE Virotherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F230-20160331
980 _ _ |a I:(DE-He78)F030-20160331
980 _ _ |a I:(DE-He78)F160-20160331
980 _ _ |a I:(DE-He78)F170-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21