001     275768
005     20240229154946.0
024 7 _ |a 10.1038/s41419-023-05813-0
|2 doi
024 7 _ |a pmid:37120445
|2 pmid
024 7 _ |a pmc:PMC10148872
|2 pmc
024 7 _ |a altmetric:146863042
|2 altmetric
037 _ _ |a DKFZ-2023-00867
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Thier, Aset Ceren
|0 P:(DE-He78)f6dee6ab99c48e6c77bd0817628c3f71
|b 0
|e First author
|u dkfz
245 _ _ |a Targeting fatty acid oxidation via Acyl-CoA binding protein hinders glioblastoma invasion.
260 _ _ |a London [u.a.]
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683026674_7324
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A230#LA:A230#
520 _ _ |a The diffuse nature of Glioblastoma (GBM) tumors poses a challenge to current therapeutic options. We have previously shown that Acyl-CoA Binding Protein (ACBP, also known as DBI) regulates lipid metabolism in GBM cells, favoring fatty acid oxidation (FAO). Here we show that ACBP downregulation results in wide transcriptional changes affecting invasion-related genes. In vivo experiments using patient-derived xenografts combined with in vitro models demonstrated that ACBP sustains GBM invasion via binding to fatty acyl-CoAs. Blocking FAO mimics ACBPKD-induced immobility, a cellular phenotype that can be rescued by increasing FAO rates. Further investigation into ACBP-downstream pathways served to identify Integrin beta-1, a gene downregulated upon inhibition of either ACBP expression or FAO rates, as a mediator for ACBP's role in GBM invasion. Altogether, our findings highlight a role for FAO in GBM invasion and reveal ACBP as a therapeutic vulnerability to stall FAO and subsequent cell invasion in GBM tumors.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Carrier Proteins
|2 NLM Chemicals
650 _ 7 |a Diazepam Binding Inhibitor
|2 NLM Chemicals
650 _ 7 |a Fatty Acids
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Carrier Proteins: metabolism
|2 MeSH
650 _ 2 |a Glioblastoma: genetics
|2 MeSH
650 _ 2 |a Diazepam Binding Inhibitor: metabolism
|2 MeSH
650 _ 2 |a Lipid Metabolism
|2 MeSH
650 _ 2 |a Fatty Acids: metabolism
|2 MeSH
700 1 _ |a Di Marco, Barbara
|0 P:(DE-He78)3f238cb47096916308d99eabbce682e9
|b 1
|e First author
|u dkfz
700 1 _ |a Nevedomskaya, Ekaterina
|b 2
700 1 _ |a Ulug, Berk
|0 P:(DE-He78)5a85b6e269e83210863fec67ef9fd8b8
|b 3
700 1 _ |a Lesche, Ralf
|b 4
700 1 _ |a Christian, Sven
|b 5
700 1 _ |a Alfonso, Julieta
|0 P:(DE-He78)3f128e570b3a9009d7b52a0523af43dd
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41419-023-05813-0
|g Vol. 14, no. 4, p. 296
|0 PERI:(DE-600)2541626-1
|n 4
|p 296
|t Cell death & disease
|v 14
|y 2023
|x 2041-4889
909 C O |o oai:inrepo02.dkfz.de:275768
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)f6dee6ab99c48e6c77bd0817628c3f71
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)3f238cb47096916308d99eabbce682e9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)5a85b6e269e83210863fec67ef9fd8b8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3f128e570b3a9009d7b52a0523af43dd
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-14T16:18:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-17
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL DEATH DIS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL DEATH DIS : 2022
|d 2023-10-26
920 2 _ |0 I:(DE-He78)A230-20160331
|k A230
|l A230 Klinische Neurobiologie
|x 0
920 1 _ |0 I:(DE-He78)A230-20160331
|k A230
|l A230 Klinische Neurobiologie
|x 0
920 0 _ |0 I:(DE-He78)A230-20160331
|k A230
|l A230 Klinische Neurobiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A230-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21