000275783 001__ 275783
000275783 005__ 20240229154946.0
000275783 0247_ $$2doi$$a10.1051/m2an/2022090
000275783 0247_ $$2ISSN$$a2822-7840
000275783 0247_ $$2ISSN$$a0764-583X
000275783 0247_ $$2ISSN$$a1290-3841
000275783 0247_ $$2ISSN$$a2804-7214
000275783 037__ $$aDKFZ-2023-00877
000275783 082__ $$a510
000275783 1001_ $$00000-0002-2061-2114$$aKusch, Jonas$$b0
000275783 245__ $$aA robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy
000275783 260__ $$aLes Ulis$$bEDP Sciences$$c2023
000275783 3367_ $$2DRIVER$$aarticle
000275783 3367_ $$2DataCite$$aOutput Types/Journal article
000275783 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683208419_1568
000275783 3367_ $$2BibTeX$$aARTICLE
000275783 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000275783 3367_ $$00$$2EndNote$$aJournal Article
000275783 500__ $$a#LA:E040#
000275783 520__ $$aDeterministic models for radiation transport describe the density of radiation particles moving through a background material. In radiation therapy applications, the phase space of this density is composed of energy, spatial position and direction of flight. The resulting six-dimensional phase space prohibits fine numerical discretizations, which are essential for the construction of accurate and reliable treatment plans. In this work, we tackle the high dimensional phase space through a dynamical low-rank approximation of the particle density. Dynamical low-rank approximation (DLRA) evolves the solution on a low-rank manifold in time. Interpreting the energy variable as a pseudo-time lets us employ the DLRA framework to represent the solution of the radiation transport equation on a low-rank manifold for every energy. Stiff scattering terms are treated through an efficient implicit energy discretization and a rank adaptive integrator is chosen to dynamically adapt the rank in energy. To facilitate the use of boundary conditions and reduce the overall rank, the radiation transport equation is split into collided and uncollided particles through a collision source method. Uncollided particles are described by a directed quadrature set guaranteeing low computational costs, whereas collided particles are represented by a low-rank solution. It can be shown that the presented method is L-2-stable under a time step restriction which does not depend on stiff scattering terms. Moreover, the implicit treatment of scattering does not require numerical inversions of matrices. Numerical results for radiation therapy configurations as well as the line source benchmark underline the efficiency of the proposed method.
000275783 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000275783 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de
000275783 7001_ $$0P:(DE-He78)4db54f169f7baffd59c7a34f6fd4372f$$aStammer, Pia$$b1$$eLast author$$udkfz
000275783 773__ $$0PERI:(DE-600)1485131-3$$a10.1051/m2an/2022090$$gVol. 57, no. 2, p. 865 - 891$$n2$$p865 - 891$$tMathematical modelling and numerical analysis$$v57$$x2822-7840$$y2023
000275783 909CO $$ooai:inrepo02.dkfz.de:275783$$pVDB
000275783 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4db54f169f7baffd59c7a34f6fd4372f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000275783 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000275783 9141_ $$y2023
000275783 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000275783 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000275783 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-23$$wger
000275783 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000275783 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000275783 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000275783 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
000275783 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bESAIM-MATH MODEL NUM : 2022$$d2023-08-23
000275783 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000275783 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
000275783 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
000275783 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
000275783 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000275783 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000275783 980__ $$ajournal
000275783 980__ $$aVDB
000275783 980__ $$aI:(DE-He78)E040-20160331
000275783 980__ $$aUNRESTRICTED