001     276080
005     20240229154955.0
024 7 _ |a 10.1186/s12916-023-02858-y
|2 doi
024 7 _ |a pmid:37189125
|2 pmid
024 7 _ |a pmc:PMC10186672
|2 pmc
024 7 _ |a altmetric:148394254
|2 altmetric
037 _ _ |a DKFZ-2023-00986
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rahnenführer, Jörg
|0 0000-0002-8947-440X
|b 0
245 _ _ |a Statistical analysis of high-dimensional biomedical data: a gentle introduction to analytical goals, common approaches and challenges.
260 _ _ |a Heidelberg [u.a.]
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1684486891_25826
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In high-dimensional data (HDD) settings, the number of variables associated with each observation is very large. Prominent examples of HDD in biomedical research include omics data with a large number of variables such as many measurements across the genome, proteome, or metabolome, as well as electronic health records data that have large numbers of variables recorded for each patient. The statistical analysis of such data requires knowledge and experience, sometimes of complex methods adapted to the respective research questions.Advances in statistical methodology and machine learning methods offer new opportunities for innovative analyses of HDD, but at the same time require a deeper understanding of some fundamental statistical concepts. Topic group TG9 'High-dimensional data' of the STRATOS (STRengthening Analytical Thinking for Observational Studies) initiative provides guidance for the analysis of observational studies, addressing particular statistical challenges and opportunities for the analysis of studies involving HDD. In this overview, we discuss key aspects of HDD analysis to provide a gentle introduction for non-statisticians and for classically trained statisticians with little experience specific to HDD.The paper is organized with respect to subtopics that are most relevant for the analysis of HDD, in particular initial data analysis, exploratory data analysis, multiple testing, and prediction. For each subtopic, main analytical goals in HDD settings are outlined. For each of these goals, basic explanations for some commonly used analysis methods are provided. Situations are identified where traditional statistical methods cannot, or should not, be used in the HDD setting, or where adequate analytic tools are still lacking. Many key references are provided.This review aims to provide a solid statistical foundation for researchers, including statisticians and non-statisticians, who are new to research with HDD or simply want to better evaluate and understand the results of HDD analyses.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Analytical goals
|2 Other
650 _ 7 |a Clustering
|2 Other
650 _ 7 |a Exploratory data analysis
|2 Other
650 _ 7 |a High-dimensional data
|2 Other
650 _ 7 |a Initial data analysis
|2 Other
650 _ 7 |a Multiple testing
|2 Other
650 _ 7 |a Omics data
|2 Other
650 _ 7 |a Prediction
|2 Other
650 _ 7 |a STRATOS initiative
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Goals
|2 MeSH
650 _ 2 |a Biomedical Research
|2 MeSH
650 _ 2 |a Research Design
|2 MeSH
700 1 _ |a De Bin, Riccardo
|0 0000-0002-7441-6880
|b 1
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 2
|u dkfz
700 1 _ |a Ambrogi, Federico
|0 0000-0001-9358-011X
|b 3
700 1 _ |a Lusa, Lara
|0 0000-0002-8981-2421
|b 4
700 1 _ |a Boulesteix, Anne-Laure
|0 0000-0002-2729-0947
|b 5
700 1 _ |a Migliavacca, Eugenia
|b 6
700 1 _ |a Binder, Harald
|0 0000-0002-5666-8662
|b 7
700 1 _ |a Michiels, Stefan
|0 0000-0002-6963-2968
|b 8
700 1 _ |a Sauerbrei, Willi
|0 0000-0002-6792-4123
|b 9
700 1 _ |a McShane, Lisa
|0 0000-0001-8195-3206
|b 10
700 1 _ |a data”, for topic group “High-dimensional
|b 11
|e Collaboration Author
773 _ _ |a 10.1186/s12916-023-02858-y
|g Vol. 21, no. 1, p. 182
|0 PERI:(DE-600)2131669-7
|n 1
|p 182
|t BMC medicine
|v 21
|y 2023
|x 1741-7015
909 C O |o oai:inrepo02.dkfz.de:276080
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC MED : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:07:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:07:15Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2023-05-02T09:07:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BMC MED : 2022
|d 2023-10-25
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21