001     276226
005     20240229154958.0
024 7 _ |a 10.1093/eurjpc/zwad122
|2 doi
024 7 _ |a pmid:37079290
|2 pmid
024 7 _ |a 2047-4873
|2 ISSN
024 7 _ |a 2047-4881
|2 ISSN
024 7 _ |a altmetric:148233746
|2 altmetric
037 _ _ |a DKFZ-2023-01035
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Haller, Paul M
|0 0000-0002-7714-4446
|b 0
245 _ _ |a Biomarker-based prediction of fatal and non-fatal cardiovascular outcomes in individuals with diabetes mellitus.
260 _ _ |a Oxford
|c 2023
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1694087367_25272
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2023 Sep 6;30(12):1218-1226
520 _ _ |a The role of biomarkers in predicting cardiovascular outcomes in high-risk individuals is not well established. We aimed to investigate benefits of adding biomarkers to cardiovascular risk assessment in individuals with and without diabetes.We used individual-level data of 95,292 individuals of the European population harmonized in the BiomarCaRE consortium and investigated the prognostic ability of high-sensitivity cardiac troponin I (hs-cTnI), N-terminal prohormone of brain natriuretic peptide (NT-proBNP) and high-sensitivity C-reactive protein (hs-CRP). Cox-regression models were used to determine adjusted hazard ratios (adj-HR) of diabetes and log-transformed biomarkers for fatal and non-fatal cardiovascular events. Models were compared using the likelihood ratio test. Stratification by specific biomarker cut-offs was performed for crude time-to-event analysis using Kaplan-Meier-plots.Overall, 6,090 (6.4%) individuals had diabetes at baseline, median follow-up was 9.9 years. Adjusting for classical risk factors and biomarkers, diabetes (HR 2.11 [95% CI 1.92, 2.32]), and all biomarkers (HR per interquartile range hs-cTnI 1.08 [95% CI 1.04, 1.12]; NT-proBNP 1.44 [95% CI 1.37, 1.53]; hs-CRP 1.27 [95% CI 1.21, 1.33]) were independently associated with cardiovascular events. Specific cut-offs for each biomarker identified a high-risk group of individuals with diabetes losing a median of 15.5 years of life compared to diabetics without elevated biomarkers. Addition of biomarkers to the Cox-model significantly improved the prediction of outcomes (likelihood ratio test for nested models p < 0.001), accompanied by an increase in the c-index (increase to 0.81).Biomarkers improve cardiovascular risk prediction in individuals with and without diabetes and facilitate the identification of individuals with diabetes at highest risk for cardiovascular events.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a NT-proBNP
|2 Other
650 _ 7 |a biomarkers
|2 Other
650 _ 7 |a cardiovascular events
|2 Other
650 _ 7 |a diabetes
|2 Other
650 _ 7 |a hs-CRP
|2 Other
650 _ 7 |a hs-cTnI
|2 Other
700 1 _ |a Goßling, Alina
|0 0000-0002-5211-5593
|b 1
700 1 _ |a Magnussen, Christina
|0 0000-0002-5102-0955
|b 2
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 3
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 4
|u dkfz
700 1 _ |a Iacoviello, Licia
|0 0000-0003-0514-5885
|b 5
700 1 _ |a Costanzo, Simona
|0 0000-0003-4569-1186
|b 6
700 1 _ |a Kee, Frank
|b 7
700 1 _ |a Koenig, Wolfgang
|0 0000-0002-2064-9603
|b 8
700 1 _ |a Linneberg, Allan
|0 0000-0002-0994-0184
|b 9
700 1 _ |a Sujana, Chaterina
|b 10
700 1 _ |a Thorand, Barbara
|0 0000-0002-5667-6849
|b 11
700 1 _ |a Salomaa, Veikko
|0 0000-0001-7563-5324
|b 12
700 1 _ |a Niiranen, Teemu J
|b 13
700 1 _ |a Söderberg, Stefan
|b 14
700 1 _ |a Völzke, Henry
|b 15
700 1 _ |a Dörr, Marcus
|0 0000-0001-7471-475X
|b 16
700 1 _ |a Sans, Susana
|0 0000-0002-0400-5197
|b 17
700 1 _ |a Padró, Teresa
|b 18
700 1 _ |a Felix, Stephan B
|b 19
700 1 _ |a Nauck, Matthias
|b 20
700 1 _ |a Petersmann, Astrid
|b 21
700 1 _ |a Palmieri, Luigi
|b 22
700 1 _ |a Donfrancesco, Chiara
|0 0000-0002-8040-5571
|b 23
700 1 _ |a De Ponti, Roberto
|b 24
700 1 _ |a Veronesi, Giovanni
|0 0000-0002-4119-6615
|b 25
700 1 _ |a Ferrario, Marco M
|b 26
700 1 _ |a Kuulasmaa, Kari
|0 0000-0003-2165-1411
|b 27
700 1 _ |a Zeller, Tanja
|b 28
700 1 _ |a Ojeda, Francisco
|b 29
700 1 _ |a Blankenberg, Stefan
|b 30
700 1 _ |a Westermann, Dirk
|0 0000-0002-7542-1956
|b 31
700 1 _ |a Consortium, BiomarCaRE
|b 32
|e Collaboration Author
773 _ _ |a 10.1093/eurjpc/zwad122
|g p. zwad122
|0 PERI:(DE-600)2646239-4
|n 12
|p 1218-1226
|t European journal of preventive cardiology
|v 30
|y 2023
|x 2047-4873
909 C O |p VDB
|o oai:inrepo02.dkfz.de:276226
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J PREV CARDIOL : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J PREV CARDIOL : 2022
|d 2023-08-24
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21