001     276335
005     20240229155000.0
024 7 _ |a 10.1016/j.schres.2023.05.011
|2 doi
024 7 _ |a pmid:37236889
|2 pmid
024 7 _ |a 0920-9964
|2 ISSN
024 7 _ |a 1573-2509
|2 ISSN
024 7 _ |a altmetric:149045360
|2 altmetric
037 _ _ |a DKFZ-2023-01065
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hirjak, Dusan
|b 0
245 _ _ |a Microstructural white matter biomarkers of symptom severity and therapy outcome in catatonia: Rationale, study design and preliminary clinical data of the whiteCAT study.
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1703247290_28909
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E230# / 2024 Jan:263:160-168
520 _ _ |a The number of magnetic resonance imaging (MRI) studies on neuronal correlates of catatonia has dramatically increased in the last 10 years, but conclusive findings on white matter (WM) tracts alterations underlying catatonic symptoms are still lacking. Therefore, we conduct an interdisciplinary longitudinal MRI study (whiteCAT) with two main objectives: First, we aim to enroll 100 psychiatric patients with and 50 psychiatric patients without catatonia according to ICD-11 who will undergo a deep phenotyping approach with an extensive battery of demographic, psychopathological, psychometric, neuropsychological, instrumental and diffusion MRI assessments at baseline and 12 weeks follow-up. So far, 28 catatonia patients and 40 patients with schizophrenia or other primary psychotic disorders or mood disorders without catatonia have been studied cross-sectionally. 49 out of 68 patients have completed longitudinal assessment, so far. Second, we seek to develop and implement a new method for semi-automatic fiber tract delineation using active learning. By training supportive machine learning algorithms on the fly that are custom tailored to the respective analysis pipeline used to obtain the tractogram as well as the WM tract of interest, we plan to streamline and speed up this tedious and error-prone task while at the same time increasing reproducibility and robustness of the extraction process. The goal is to develop robust neuroimaging biomarkers of symptom severity and therapy outcome based on WM tracts underlying catatonia. If our MRI study is successful, it will be the largest longitudinal study to date that has investigated WM tracts in catatonia patients.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Catatonia
|2 Other
650 _ 7 |a DTI
|2 Other
650 _ 7 |a Longitudinal
|2 Other
650 _ 7 |a MRI
|2 Other
650 _ 7 |a Outcome
|2 Other
700 1 _ |a Brandt, Geva A
|b 1
700 1 _ |a Peretzke, Robin
|0 P:(DE-He78)4995a888dce6affae1a4f407647c2b5c
|b 2
|u dkfz
700 1 _ |a Fritze, Stefan
|b 3
700 1 _ |a Meyer-Lindenberg, Andreas
|b 4
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 5
|u dkfz
700 1 _ |a Neher, Peter
|0 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.schres.2023.05.011
|g p. S0920996423001913
|0 PERI:(DE-600)1500726-1
|p 160-168
|t Schizophrenia research
|v 263
|y 2024
|x 0920-9964
909 C O |p VDB
|o oai:inrepo02.dkfz.de:276335
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)4995a888dce6affae1a4f407647c2b5c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCHIZOPHR RES : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21