001     276790
005     20240918112836.0
024 7 _ |a 10.1073/pnas.2220132120
|2 doi
024 7 _ |a pmid:37307476
|2 pmid
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a altmetric:150260039
|2 altmetric
037 _ _ |a DKFZ-2023-01165
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Schmalz, Michael
|b 0
245 _ _ |a Dissection of DNA damage and repair pathways in live cells by femtosecond laser microirradiation and free-electron modeling.
260 _ _ |a Washington, DC
|c 2023
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726651692_14745
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:W650#
520 _ _ |a Understanding and predicting the outcome of the interaction of light with DNA has a significant impact on the study of DNA repair and radiotherapy. We report on a combination of femtosecond pulsed laser microirradiation at different wavelengths, quantitative imaging, and numerical modeling that yields a comprehensive picture of photon-mediated and free-electron-mediated DNA damage pathways in live cells. Laser irradiation was performed under highly standardized conditions at four wavelengths between 515 nm and 1,030 nm, enabling to study two-photon photochemical and free-electron-mediated DNA damage in situ. We quantitatively assessed cyclobutane pyrimidine dimer (CPD) and γH2AX-specific immunofluorescence signals to calibrate the damage threshold dose at these wavelengths and performed a comparative analysis of the recruitment of DNA repair factors xeroderma pigmentosum complementation group C (XPC) and Nijmegen breakage syndrome 1 (Nbs1). Our results show that two-photon-induced photochemical CPD generation dominates at 515 nm, while electron-mediated damage dominates at wavelengths ≥620 nm. The recruitment analysis revealed a cross talk between nucleotide excision and homologous recombination DNA repair pathways at 515 nm. Numerical simulations predicted electron densities and electron energy spectra, which govern the yield functions of a variety of direct electron-mediated DNA damage pathways and of indirect damage by •OH radicals resulting from laser and electron interactions with water. Combining these data with information on free electron-DNA interactions gained in artificial systems, we provide a conceptual framework for the interpretation of the wavelength dependence of laser-induced DNA damage that may guide the selection of irradiation parameters in studies and applications that require the selective induction of DNA lesions.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a DNA strand breaks
|2 Other
650 _ 7 |a nonlinear photodamage
|2 Other
650 _ 7 |a oxidative DNA damage
|2 Other
650 _ 7 |a reductive DNA damage
|2 Other
650 _ 7 |a wavelength selectivity
|2 Other
700 1 _ |a Liang, Xiao-Xuan
|0 0000-0002-8325-1627
|b 1
700 1 _ |a Wieser, Ines
|b 2
700 1 _ |a Gruschel, Caroline
|0 0009-0000-7452-5326
|b 3
700 1 _ |a Muskalla, Lukas
|b 4
700 1 _ |a Stöckl, Martin Thomas
|b 5
700 1 _ |a Nitschke, Roland
|0 0000-0002-9397-8475
|b 6
700 1 _ |a Linz, Norbert
|0 0000-0002-7843-5966
|b 7
700 1 _ |a Leitenstorfer, Alfred
|0 0000-0002-9847-257X
|b 8
700 1 _ |a Vogel, Alfred
|0 0000-0002-4371-9037
|b 9
700 1 _ |a Ferrando-May, Elisa
|0 0000-0002-5567-8690
|b 10
|e Last author
773 _ _ |a 10.1073/pnas.2220132120
|g Vol. 120, no. 25, p. e2220132120
|0 PERI:(DE-600)1461794-8
|n 25
|p e2220132120
|t Proceedings of the National Academy of Sciences of the United States of America
|v 120
|y 2023
|x 0027-8424
909 C O |p VDB
|o oai:inrepo02.dkfz.de:276790
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 0000-0002-5567-8690
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2023-08-26
920 2 _ |0 I:(DE-He78)W650-20160331
|k W650
|l Enabling Technology
|x 0
920 1 _ |0 I:(DE-He78)W650-20160331
|k W650
|l Enabling Technology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)W650-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21