TY  - JOUR
AU  - Zhu, Changyu
AU  - Soto-Feliciano, Yadira M
AU  - Morris, John P
AU  - Huang, Chun-Hao
AU  - Koche, Richard P
AU  - Ho, Yu-Jui
AU  - Banito, Ana
AU  - Chen, Chun-Wei
AU  - Shroff, Aditya
AU  - Tian, Sha
AU  - Livshits, Geulah
AU  - Chen, Chi-Chao
AU  - Fennell, Myles
AU  - Armstrong, Scott A
AU  - Allis, C David
AU  - Tschaharganeh, Darjus F
AU  - Lowe, Scott W
TI  - MLL3 regulates the CDKN2A tumor suppressor locus in liver cancer.
JO  - eLife
VL  - 12
SN  - 2050-084X
CY  - Cambridge
PB  - eLife Sciences Publications
M1  - DKFZ-2023-01226
SP  - e80854
PY  - 2023
AB  - Mutations in genes encoding components of chromatin modifying and remodeling complexes are among the most frequently observed somatic events in human cancers. For example, missense and nonsense mutations targeting the mixed lineage leukemia family member 3 (MLL3, encoded by KMT2C) histone methyltransferase occur in a range of solid tumors, and heterozygous deletions encompassing KMT2C occur in a subset of aggressive leukemias. Although MLL3 loss can promote tumorigenesis in mice, the molecular targets and biological processes by which MLL3 suppresses tumorigenesis remain poorly characterized. Here, we combined genetic, epigenomic, and animal modeling approaches to demonstrate that one of the mechanisms by which MLL3 links chromatin remodeling to tumor suppression is by co-activating the Cdkn2a tumor suppressor locus. Disruption of Kmt2c cooperates with Myc overexpression in the development of murine hepatocellular carcinoma (HCC), in which MLL3 binding to the Cdkn2a locus is blunted, resulting in reduced H3K4 methylation and low expression levels of the locus-encoded tumor suppressors p16/Ink4a and p19/Arf. Conversely, elevated KMT2C expression increases its binding to the CDKN2A locus and co-activates gene transcription. Endogenous Kmt2c restoration reverses these chromatin and transcriptional effects and triggers Ink4a/Arf-dependent apoptosis. Underscoring the human relevance of this epistasis, we found that genomic alterations in KMT2C and CDKN2A were associated with similar transcriptional profiles in human HCC samples. These results collectively point to a new mechanism for disrupting CDKN2A activity during cancer development and, in doing so, link MLL3 to an established tumor suppressor network.
KW  - Humans
KW  - Animals
KW  - Mice
KW  - Liver Neoplasms: genetics
KW  - Liver Neoplasms: pathology
KW  - Tumor Suppressor Protein p14ARF: genetics
KW  - Carcinoma, Hepatocellular: genetics
KW  - Carcinoma, Hepatocellular: pathology
KW  - Cyclin-Dependent Kinase Inhibitor p16: genetics
KW  - Cyclin-Dependent Kinase Inhibitor p16: metabolism
KW  - Chromatin
KW  - Carcinogenesis
KW  - MLL3 (Other)
KW  - cancer (Other)
KW  - cancer biology (Other)
KW  - chromatin (Other)
KW  - human (Other)
KW  - liver cancer (Other)
KW  - mouse (Other)
KW  - tumor suppressor (Other)
KW  - Tumor Suppressor Protein p14ARF (NLM Chemicals)
KW  - Cyclin-Dependent Kinase Inhibitor p16 (NLM Chemicals)
KW  - Chromatin (NLM Chemicals)
KW  - CDKN2A protein, human (NLM Chemicals)
LB  - PUB:(DE-HGF)16
C6  - pmid:37261974
C2  - pmc:PMC10279454
DO  - DOI:10.7554/eLife.80854
UR  - https://inrepo02.dkfz.de/record/276949
ER  -