000277120 001__ 277120
000277120 005__ 20240229155011.0
000277120 0247_ $$2doi$$a10.1158/1055-9965.EPI-22-1209
000277120 0247_ $$2pmid$$apmid:37364297
000277120 0247_ $$2ISSN$$a1055-9965
000277120 0247_ $$2ISSN$$a1538-7755
000277120 037__ $$aDKFZ-2023-01285
000277120 041__ $$aEnglish
000277120 082__ $$a610
000277120 1001_ $$00000-0002-8019-7012$$aLai, John$$b0
000277120 245__ $$aUsing DEPendency of association on the number of Top Hits (DEPTH) as a complementary tool to identify novel colorectal cancer susceptibility loci.
000277120 260__ $$aPhiladelphia, Pa.$$bAACR$$c2023
000277120 3367_ $$2DRIVER$$aarticle
000277120 3367_ $$2DataCite$$aOutput Types/Journal article
000277120 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1694094945_25275
000277120 3367_ $$2BibTeX$$aARTICLE
000277120 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000277120 3367_ $$00$$2EndNote$$aJournal Article
000277120 500__ $$a2023 Sep 1;32(9):1153-1159
000277120 520__ $$aDEPendency of association on the number of Top Hits (DEPTH) is an approach to identify candidate susceptibility regions by considering the risk signals from overlapping groups of sequential variants across the genome.We conducted a DEPTH analysis using a sliding window of 200 SNPs to colorectal cancer (CRC) data from the Colon Cancer Family Registry (CCFR) (5,735 cases and 3,688 controls), and GECCO (8,865 cases and 10,285 controls) studies. A DEPTH score >1 was used to identify candidate susceptibility regions common to both studies. We compared DEPTH results against those from conventional GWAS analyses of these two studies as well as against 132 published susceptibility regions.Initial DEPTH analysis revealed 2,622 (CCFR) and 3,686 (GECCO) candidate susceptibility regions, of which 569 were common to both studies. Bootstrapping revealed 40 and 49 candidate susceptibility regions in the CCFR and GECCO data sets, respectively. Notably, DEPTH identified at least 82 regions that would not be detected using conventional GWAS methods, nor had they been identified by previous CRC GWASs. We found four reproducible candidate susceptibility regions (2q22.2, 2q33.1, 6p21.32, 13q14.3). The highest DEPTH scores were in the HLA locus at 6p21 where the strongest associated SNPs were rs762216297, rs149490268, rs114741460, and rs199707618 for the CCFR data, and rs9270761 for the GECCO data.DEPTH can identify candidate susceptibility regions for CRC not identified using conventional analyses of larger datasets.DEPTH has potential as a powerful complementary tool to conventional GWAS analyses for discovering susceptibility regions within the genome.
000277120 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000277120 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000277120 7001_ $$00000-0001-9792-4792$$aWong, Chi Kuen$$b1
000277120 7001_ $$00000-0002-1788-2375$$aSchmidt, Daniel F$$b2
000277120 7001_ $$00000-0002-4561-2719$$aKapuscinski, Miroslaw K$$b3
000277120 7001_ $$00000-0001-8283-2422$$aAlpen, Karen$$b4
000277120 7001_ $$00000-0002-1627-5047$$aMaclnnis, Robert J$$b5
000277120 7001_ $$00000-0003-2225-6675$$aBuchanan, Daniel D$$b6
000277120 7001_ $$00000-0002-2794-5261$$aWin, Aung K$$b7
000277120 7001_ $$00000-0001-8040-3341$$aFigueiredo, Jane C$$b8
000277120 7001_ $$00000-0001-7284-6767$$aChan, Andrew T$$b9
000277120 7001_ $$00000-0002-4173-7530$$aHarrison, Tabitha A$$b10
000277120 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b11$$udkfz
000277120 7001_ $$00000-0003-0544-1633$$aWhite, Emily$$b12
000277120 7001_ $$00000-0001-5013-980X$$aLe Marchand, Loic$$b13
000277120 7001_ $$00000-0002-2692-221X$$aPai, Rish K$$b14
000277120 7001_ $$00000-0001-5666-9318$$aPeters, Ulrike$$b15
000277120 7001_ $$00000-0002-8567-173X$$aHopper, John L$$b16
000277120 7001_ $$00000-0002-8964-6160$$aJenkins, Mark A$$b17
000277120 7001_ $$00000-0003-3017-0871$$aMakalic, Enes$$b18
000277120 773__ $$0PERI:(DE-600)2036781-8$$a10.1158/1055-9965.EPI-22-1209$$gp. EPI-22-1209$$n9$$p1153-1159$$tCancer epidemiology, biomarkers & prevention$$v32$$x1055-9965$$y2023
000277120 909CO $$ooai:inrepo02.dkfz.de:277120$$pVDB
000277120 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000277120 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000277120 9141_ $$y2023
000277120 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-10
000277120 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-10
000277120 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-10
000277120 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
000277120 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000277120 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-19
000277120 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000277120 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-19
000277120 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-19
000277120 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCER EPIDEM BIOMAR : 2022$$d2023-08-19
000277120 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000277120 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-19
000277120 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000277120 980__ $$ajournal
000277120 980__ $$aVDB
000277120 980__ $$aI:(DE-He78)C070-20160331
000277120 980__ $$aUNRESTRICTED