001     277120
005     20240229155011.0
024 7 _ |a 10.1158/1055-9965.EPI-22-1209
|2 doi
024 7 _ |a pmid:37364297
|2 pmid
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
037 _ _ |a DKFZ-2023-01285
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lai, John
|0 0000-0002-8019-7012
|b 0
245 _ _ |a Using DEPendency of association on the number of Top Hits (DEPTH) as a complementary tool to identify novel colorectal cancer susceptibility loci.
260 _ _ |a Philadelphia, Pa.
|c 2023
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1694094945_25275
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2023 Sep 1;32(9):1153-1159
520 _ _ |a DEPendency of association on the number of Top Hits (DEPTH) is an approach to identify candidate susceptibility regions by considering the risk signals from overlapping groups of sequential variants across the genome.We conducted a DEPTH analysis using a sliding window of 200 SNPs to colorectal cancer (CRC) data from the Colon Cancer Family Registry (CCFR) (5,735 cases and 3,688 controls), and GECCO (8,865 cases and 10,285 controls) studies. A DEPTH score >1 was used to identify candidate susceptibility regions common to both studies. We compared DEPTH results against those from conventional GWAS analyses of these two studies as well as against 132 published susceptibility regions.Initial DEPTH analysis revealed 2,622 (CCFR) and 3,686 (GECCO) candidate susceptibility regions, of which 569 were common to both studies. Bootstrapping revealed 40 and 49 candidate susceptibility regions in the CCFR and GECCO data sets, respectively. Notably, DEPTH identified at least 82 regions that would not be detected using conventional GWAS methods, nor had they been identified by previous CRC GWASs. We found four reproducible candidate susceptibility regions (2q22.2, 2q33.1, 6p21.32, 13q14.3). The highest DEPTH scores were in the HLA locus at 6p21 where the strongest associated SNPs were rs762216297, rs149490268, rs114741460, and rs199707618 for the CCFR data, and rs9270761 for the GECCO data.DEPTH can identify candidate susceptibility regions for CRC not identified using conventional analyses of larger datasets.DEPTH has potential as a powerful complementary tool to conventional GWAS analyses for discovering susceptibility regions within the genome.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Wong, Chi Kuen
|0 0000-0001-9792-4792
|b 1
700 1 _ |a Schmidt, Daniel F
|0 0000-0002-1788-2375
|b 2
700 1 _ |a Kapuscinski, Miroslaw K
|0 0000-0002-4561-2719
|b 3
700 1 _ |a Alpen, Karen
|0 0000-0001-8283-2422
|b 4
700 1 _ |a Maclnnis, Robert J
|0 0000-0002-1627-5047
|b 5
700 1 _ |a Buchanan, Daniel D
|0 0000-0003-2225-6675
|b 6
700 1 _ |a Win, Aung K
|0 0000-0002-2794-5261
|b 7
700 1 _ |a Figueiredo, Jane C
|0 0000-0001-8040-3341
|b 8
700 1 _ |a Chan, Andrew T
|0 0000-0001-7284-6767
|b 9
700 1 _ |a Harrison, Tabitha A
|0 0000-0002-4173-7530
|b 10
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 11
|u dkfz
700 1 _ |a White, Emily
|0 0000-0003-0544-1633
|b 12
700 1 _ |a Le Marchand, Loic
|0 0000-0001-5013-980X
|b 13
700 1 _ |a Pai, Rish K
|0 0000-0002-2692-221X
|b 14
700 1 _ |a Peters, Ulrike
|0 0000-0001-5666-9318
|b 15
700 1 _ |a Hopper, John L
|0 0000-0002-8567-173X
|b 16
700 1 _ |a Jenkins, Mark A
|0 0000-0002-8964-6160
|b 17
700 1 _ |a Makalic, Enes
|0 0000-0003-3017-0871
|b 18
773 _ _ |a 10.1158/1055-9965.EPI-22-1209
|g p. EPI-22-1209
|0 PERI:(DE-600)2036781-8
|n 9
|p 1153-1159
|t Cancer epidemiology, biomarkers & prevention
|v 32
|y 2023
|x 1055-9965
909 C O |p VDB
|o oai:inrepo02.dkfz.de:277120
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-19
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21