001     277451
005     20240229155017.0
024 7 _ |a 10.1007/s12672-023-00742-y
|2 doi
024 7 _ |a pmid:37428291
|2 pmid
024 7 _ |a 1868-8497
|2 ISSN
024 7 _ |a 1868-8500
|2 ISSN
024 7 _ |a 2730-6011
|2 ISSN
024 7 _ |a altmetric:151205487
|2 altmetric
037 _ _ |a DKFZ-2023-01381
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Tao, Zhimin
|b 0
245 _ _ |a Construction of a novel nomogram based on competing endogenous RNAs and tumor-infiltrating immune cells for prognosis prediction in elderly patients with colorectal cancer.
260 _ _ |a [New York]
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689086011_25397
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Competitive endogenous RNAs (ceRNAs) and tumor-infiltrating immune cells play essential roles in colorectal cancer (CRC) tumorigenesis. However, their prognostic role in elderly patients with CRC is unclear. Gene expression profiles and clinical information for elderly patients with CRC were downloaded from The Cancer Genome Atlas. Univariate, LASSO, and multivariate Cox regression analyses were utilized for screening key ceRNAs and prevent overfitting. A total of 265 elderly patients with CRC were included. We constructed a novel ceRNA network consisting of 17 lncRNAs, 35 miRNAs, and 5 mRNAs. We established three prognosis predictive nomograms based on four key ceRNAs (ceRNA nomogram), five key immune cells (immune cell nomogram), and their combination (ceRNA-immune cell nomogram). Among them, the ceRNA-immune cell nomogram had the best accuracy. Furthermore, the areas under the curve of the ceRNA-immune cell nomogram were also significantly greater than the TNM stage at 1 (0.818 vs. 0.693), 3 (0.865 vs. 0.674), and 5 (0.832 vs. 0.627) years. Co-expression analysis revealed that CBX6 was positively correlated with activated dendritic cells (R = 0.45, p < 0.01), whereas negatively correlated with activated mast cells (R =- 0.43, p < 0.01). In conclusion, our study constructed three nomograms to predict prognosis in elderly patients with CRC, among which the ceRNA-immune cell nomogram had the best prediction accuracy. We inferred that the mechanism underlying the regulation of activated dendritic cells and mast cells by CBX6 might play a crucial role in tumor development and prognosis of elderly patients with CRC.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Colorectal cancer
|2 Other
650 _ 7 |a Competing endogenous RNAs
|2 Other
650 _ 7 |a Elderly patient
|2 Other
650 _ 7 |a Immune cell
|2 Other
650 _ 7 |a Nomogram
|2 Other
650 _ 7 |a Prognosis
|2 Other
700 1 _ |a Li, Bo
|b 1
700 1 _ |a Kang, Chunyan
|b 2
700 1 _ |a Wang, Wei
|b 3
700 1 _ |a Li, Xianzhe
|0 P:(DE-He78)a92f91afa83da73641a4f3abec1d3c6d
|b 4
|u dkfz
700 1 _ |a Du, Yaowu
|b 5
773 _ _ |a 10.1007/s12672-023-00742-y
|g Vol. 14, no. 1, p. 125
|0 PERI:(DE-600)3059869-2
|n 1
|p 125
|t Discover oncology
|v 14
|y 2023
|x 1868-8497
909 C O |o oai:inrepo02.dkfz.de:277451
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)a92f91afa83da73641a4f3abec1d3c6d
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-29
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-07-21T15:23:25Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DISCOV ONCOL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:13:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:13:12Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:13:12Z
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21