001     277456
005     20240229155017.0
024 7 _ |a 10.1523/JNEUROSCI.1470-22.2023
|2 doi
024 7 _ |a pmid:37429718
|2 pmid
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:151315752
|2 altmetric
037 _ _ |a DKFZ-2023-01383
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schregel, Katharina
|0 P:(DE-He78)b59c09a4d1c5975b931bf28aa652b88f
|b 0
|e First author
|u dkfz
245 _ _ |a A cellular ground truth to develop MRI signatures in glioma models by correlative light sheet microscopy and atlas-based co-registration.
260 _ _ |a Washington, DC
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1690550279_11046
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B320#LA:D170# / 2023 Jul 26;43(30):5574-5587
520 _ _ |a Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground-truth based image analysis platform to co-register MRI and light sheet microscopy (LSM) data to each other and to an anatomical reference atlas for quantification of 20 predefined anatomical subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG and S24), which exhibit different key features of human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2- and T2*-relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular and likely molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurological disease models and derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT:We established a histological ground-truth based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Co-registration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Co-registration to a mouse brain atlas enabled a regional comparison of MRI-parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurological disorders. The method can be used to decipher the structural, cellular and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Heinz, Lennart
|b 1
700 1 _ |a Hunger, Jessica
|0 P:(DE-He78)c33010c383e10a4f2925c1abcad6a76a
|b 2
|u dkfz
700 1 _ |a Pan, Chenchen
|0 P:(DE-He78)bdec1cf2918ea1865a3649dd96674030
|b 3
|u dkfz
700 1 _ |a Bode, Julia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fischer, Manuel
|b 5
700 1 _ |a Sturm, Volker
|b 6
700 1 _ |a Venkataramani, Varun
|0 P:(DE-He78)cc84982886796806e5def16a9fa227a1
|b 7
|u dkfz
700 1 _ |a Karimian-Jazi, Kianush
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Agardy, Dennis Alexander
|0 P:(DE-He78)661f199a31f6d53b12f3c348103dc4e4
|b 9
|u dkfz
700 1 _ |a Streibel, Yannik
|b 10
700 1 _ |a Zerelles, Roland
|b 11
700 1 _ |a Wick, Wolfgang
|0 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
|b 12
|u dkfz
700 1 _ |a Heiland, Sabine
|0 0000-0002-2796-3451
|b 13
700 1 _ |a Bunse, Theresa
|0 P:(DE-He78)e681100c540b628a2bdbd48772b4fb50
|b 14
|u dkfz
700 1 _ |a Tews, Björn
|0 P:(DE-He78)a33ae52a1d80b847405db3ab83b9e90d
|b 15
700 1 _ |a Platten, Michael
|0 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5
|b 16
|u dkfz
700 1 _ |a Winkler, Frank
|0 P:(DE-He78)6c294453ee36ad59deddc5494fa6aa4b
|b 17
|u dkfz
700 1 _ |a Bendszus, Martin
|0 0000-0002-9094-6769
|b 18
700 1 _ |a Breckwoldt, Michael
|0 P:(DE-He78)5ba5b48bd126214d9cb66291fa4ae303
|b 19
|e Last author
|u dkfz
773 _ _ |a 10.1523/JNEUROSCI.1470-22.2023
|g p. JN-RM-1470-22 -
|0 PERI:(DE-600)1475274-8
|n 30
|p 5574-5587
|t The journal of neuroscience
|v 43
|y 2023
|x 0270-6474
909 C O |p VDB
|o oai:inrepo02.dkfz.de:277456
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b59c09a4d1c5975b931bf28aa652b88f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c33010c383e10a4f2925c1abcad6a76a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)bdec1cf2918ea1865a3649dd96674030
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)cc84982886796806e5def16a9fa227a1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)661f199a31f6d53b12f3c348103dc4e4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)e681100c540b628a2bdbd48772b4fb50
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)a33ae52a1d80b847405db3ab83b9e90d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)6c294453ee36ad59deddc5494fa6aa4b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)5ba5b48bd126214d9cb66291fa4ae303
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2022
|d 2023-10-21
920 2 _ |0 I:(DE-He78)D170-20160331
|k D170
|l KKE Neuroimmunologie und Hirntumorimmunologie
|x 0
920 1 _ |0 I:(DE-He78)B320-20160331
|k B320
|l KKE Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)D170-20160331
|k D170
|l KKE Neuroimmunologie und Hirntumorimmunologie
|x 1
920 1 _ |0 I:(DE-He78)V077-20160331
|k V077
|l AG Molekulare Mechanismen der Tumorzell-Invasion
|x 2
920 0 _ |0 I:(DE-He78)B320-20160331
|k B320
|l KKE Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B320-20160331
980 _ _ |a I:(DE-He78)D170-20160331
980 _ _ |a I:(DE-He78)V077-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21