001     277473
005     20240229155018.0
024 7 _ |a 10.1093/jnci/djad137
|2 doi
024 7 _ |a pmid:37436712
|2 pmid
024 7 _ |a 0027-8874
|2 ISSN
024 7 _ |a 0198-0157
|2 ISSN
024 7 _ |a 1460-2105
|2 ISSN
024 7 _ |a altmetric:151929446
|2 altmetric
037 _ _ |a DKFZ-2023-01394
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Phung, Minh Tung
|b 0
245 _ _ |a A framework for assessing interactions for risk stratification models: the example of ovarian cancer.
260 _ _ |a Oxford
|c 2023
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1699972563_1526
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2023 Nov 8;115(11):1420-1426
520 _ _ |a Generally, risk stratification models for cancer use effect estimates from risk/protective factor analyses that have not assessed potential interactions between these exposures. We have developed a four-criterion framework for assessing interactions which includes statistical, qualitative, biological, and practical approaches. Using ovarian cancer, we present the application of the framework as this is an important step in developing more accurate risk stratification models. Using data from nine case-control studies in the Ovarian Cancer Association Consortium, we conducted a comprehensive analysis of interactions between 15 unequivocal risk/protective factors for ovarian cancer (including 14 non-genetic factors and a 36-variant polygenic score) with age and menopausal status. Pairwise interactions between the risk/protective factors were also assessed. We found that menopausal status modifies the association between endometriosis, first degree family history of ovarian cancer, breastfeeding, and depot-medroxyprogesterone acetate use and disease risk, highlighting the importance of understanding multiplicative interactions when developing risk prediction models.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Lee, Alice W
|b 1
700 1 _ |a McLean, Karen
|b 2
700 1 _ |a Anton-Culver, Hoda
|b 3
700 1 _ |a Bandera, Elisa V
|b 4
700 1 _ |a Carney, Michael E
|b 5
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 6
|u dkfz
700 1 _ |a Cramer, Daniel W
|b 7
700 1 _ |a Doherty, Jennifer Anne
|b 8
700 1 _ |a Turzanski-Fortner, Renée
|0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
|b 9
|u dkfz
700 1 _ |a Goodman, Marc T
|b 10
700 1 _ |a Harris, Holly R
|b 11
700 1 _ |a Jensen, Allan
|b 12
700 1 _ |a Modugno, Francesmary
|b 13
700 1 _ |a Moysich, Kirsten B
|b 14
700 1 _ |a Pharoah, Paul D P
|b 15
700 1 _ |a Qin, Bo
|b 16
700 1 _ |a Terry, Kathryn L
|b 17
700 1 _ |a Titus, Linda J
|b 18
700 1 _ |a Webb, Penelope M
|b 19
700 1 _ |a Group, Australian Ovarian Cancer Study
|b 20
|e Collaboration Author
700 1 _ |a Wu, Anna H
|b 21
700 1 _ |a Zeinomar, Nur
|b 22
700 1 _ |a Ziogas, Argyrios
|b 23
700 1 _ |a Berchuck, Andrew
|b 24
700 1 _ |a Cho, Kathleen R
|b 25
700 1 _ |a Hanley, Gillian E
|b 26
700 1 _ |a Meza, Rafael
|b 27
700 1 _ |a Mukherjee, Bhramar
|b 28
700 1 _ |a Pike, Malcolm C
|b 29
700 1 _ |a Pearce, Celeste Leigh
|b 30
700 1 _ |a Trabert, Britton
|b 31
700 1 _ |a Consortium, Ovarian Cancer Association
|b 32
|e Collaboration Author
773 _ _ |a 10.1093/jnci/djad137
|g p. djad137
|0 PERI:(DE-600)1465951-7
|n 11
|p 1420-1426
|t Journal of the National Cancer Institute
|v 115
|y 2023
|x 0027-8874
909 C O |p VDB
|o oai:inrepo02.dkfz.de:277473
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JNCI-J NATL CANCER I : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b JNCI-J NATL CANCER I : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21