001     277773
005     20240229162348.0
024 7 _ |a 10.1172/JCI158348
|2 doi
024 7 _ |a pmid:37261908
|2 pmid
024 7 _ |a pmc:PMC10348769
|2 pmc
024 7 _ |a 0021-9738
|2 ISSN
024 7 _ |a 1558-8238
|2 ISSN
024 7 _ |a altmetric:149504654
|2 altmetric
037 _ _ |a DKFZ-2023-01488
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Dragomir, Mihnea-Paul
|0 P:(DE-He78)396821e874b632341e4bcabd27bcad3f
|b 0
|u dkfz
245 _ _ |a Anti-miR-93-5p therapy prolongs sepsis survival by restoring the peripheral immune response.
260 _ _ |a Ann Arbor, Mich.
|c 2023
|b ASCJ
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1690443616_31846
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sepsis remains a leading cause of death for humans and currently has no pathogenesis-specific therapy. Hampered progress is partly due to a lack of insight into deep mechanistic processes. In the past decade, deciphering the functions of small noncoding miRNAs in sepsis pathogenesis became a dynamic research topic. To screen for new miRNA targets for sepsis therapeutics, we used samples for miRNA array analysis of PBMCs from patients with sepsis and control individuals, blood samples from 2 cohorts of patients with sepsis, and multiple animal models: mouse cecum ligation puncture-induced (CLP-induced) sepsis, mouse viral miRNA challenge, and baboon Gram+ and Gram- sepsis models. miR-93-5p met the criteria for a therapeutic target, as it was overexpressed in baboons that died early after induction of sepsis, was downregulated in patients who survived after sepsis, and correlated with negative clinical prognosticators for sepsis. Therapeutically, inhibition of miR-93-5p prolonged the overall survival of mice with CLP-induced sepsis, with a stronger effect in older mice. Mechanistically, anti-miR-93-5p therapy reduced inflammatory monocytes and increased circulating effector memory T cells, especially the CD4+ subset. AGO2 IP in miR-93-KO T cells identified important regulatory receptors, such as CD28, as direct miR-93-5p target genes. In conclusion, miR-93-5p is a potential therapeutic target in sepsis through the regulation of both innate and adaptive immunity, with possibly a greater benefit for elderly patients than for young patients.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Adaptive immunity
|2 Other
650 _ 7 |a Immunology
|2 Other
650 _ 7 |a Infectious disease
|2 Other
650 _ 7 |a Innate immunity
|2 Other
650 _ 7 |a Noncoding RNAs
|2 Other
650 _ 7 |a Antagomirs
|2 NLM Chemicals
650 _ 7 |a MicroRNAs
|2 NLM Chemicals
650 _ 7 |a MIRN93 microRNA, human
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Antagomirs
|2 MeSH
650 _ 2 |a MicroRNAs: genetics
|2 MeSH
650 _ 2 |a Adaptive Immunity
|2 MeSH
650 _ 2 |a Sepsis: pathology
|2 MeSH
700 1 _ |a Fuentes-Mattei, Enrique
|b 1
700 1 _ |a Winkle, Melanie
|b 2
700 1 _ |a Okubo, Keishi
|b 3
700 1 _ |a Bayraktar, Recep
|b 4
700 1 _ |a Knutsen, Erik
|b 5
700 1 _ |a Qdaisat, Aiham
|b 6
700 1 _ |a Chen, Meng
|b 7
700 1 _ |a Li, Yongfeng
|b 8
700 1 _ |a Shimizu, Masayoshi
|b 9
700 1 _ |a Pang, Lan
|b 10
700 1 _ |a Liu, Kevin
|b 11
700 1 _ |a Liu, Xiuping
|b 12
700 1 _ |a Anfossi, Simone
|b 13
700 1 _ |a Zhang, Huanyu
|b 14
700 1 _ |a Koch, Ines
|b 15
700 1 _ |a Tran, Anh M
|b 16
700 1 _ |a Mohapatra, Swati
|b 17
700 1 _ |a Ton, Anh
|b 18
700 1 _ |a Kaplan, Mecit
|b 19
700 1 _ |a Anderson, Matthew W
|b 20
700 1 _ |a Rothfuss, Spencer J
|b 21
700 1 _ |a Silasi, Robert
|b 22
700 1 _ |a Keshari, Ravi S
|b 23
700 1 _ |a Ferracin, Manuela
|b 24
700 1 _ |a Ivan, Cristina
|b 25
700 1 _ |a Rodriguez-Aguayo, Cristian
|b 26
700 1 _ |a Lopez-Berestein, Gabriel
|b 27
700 1 _ |a Georgescu, Constantin
|b 28
700 1 _ |a Banerjee, Pinaki P
|b 29
700 1 _ |a Basar, Rafet
|b 30
700 1 _ |a Li, Ziyi
|b 31
700 1 _ |a Horst, David
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Vasilescu, Catalin
|b 33
700 1 _ |a Bertilaccio, Maria Teresa S
|b 34
700 1 _ |a Rezvani, Katayoun
|b 35
700 1 _ |a Lupu, Florea
|b 36
700 1 _ |a Yeung, Sai-Ching
|b 37
700 1 _ |a Calin, George A
|b 38
773 _ _ |a 10.1172/JCI158348
|g Vol. 133, no. 14, p. e158348
|0 PERI:(DE-600)2018375-6
|n 14
|p e158348
|t The journal of clinical investigation
|v 133
|y 2023
|x 0021-9738
909 C O |o oai:inrepo02.dkfz.de:277773
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)396821e874b632341e4bcabd27bcad3f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 32
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-08-11T09:34:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-02-14T21:03:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-02-14T21:03:14Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-02-14T21:03:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CLIN INVEST : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J CLIN INVEST : 2022
|d 2023-10-22
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21