001     277785
005     20240229155024.0
024 7 _ |a 10.1002/bimj.202200023
|2 doi
024 7 _ |a pmid:37493036
|2 pmid
024 7 _ |a 0006-3452
|2 ISSN
024 7 _ |a 0323-3847
|2 ISSN
024 7 _ |a 1521-4036
|2 ISSN
037 _ _ |a DKFZ-2023-01499
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Erdmann, Stella
|0 0000-0003-0217-316X
|b 0
245 _ _ |a Using real-world data to predict health outcomes-The prediction design: Application and sample size planning.
260 _ _ |a Berlin
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1691064229_20940
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2023 Aug;65(6):e2200023
520 _ _ |a The gold standard for investigating the efficacy of a new therapy is a (pragmatic) randomized controlled trial (RCT). This approach is costly, time-consuming, and not always practicable. At the same time, huge quantities of available patient-level control condition data in analyzable format of (former) RCTs or real-world data (RWD) are neglected. Therefore, alternative study designs are desirable. The design presented here consists of setting up a prediction model for determining treatment effects under the control condition for future patients. When a new treatment is intended to be tested against a control treatment, a single-arm trial for the new therapy is conducted. The treatment effect is then evaluated by comparing the outcomes of the single-arm trial against the predicted outcomes under the control condition. While there are obvious advantages of this design compared to classical RCTs (increased efficiency, lower cost, alleviating participants' fear of being on control treatment), there are several sources of bias. Our aim is to investigate whether and how such a design-the prediction design-may be used to provide information on treatment effects by leveraging external data sources. For this purpose, we investigated under what assumptions linear prediction models could be used to predict the counterfactual of patients precisely enough to construct a test and an appropriate sample size formula for evaluating the average treatment effect in the population of a new study. A user-friendly R Shiny application (available at: https://web.imbi.uni-heidelberg.de/PredictionDesignR/) facilitates the application of the proposed methods, while a real-world application example illustrates them.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a counterfactual
|2 Other
650 _ 7 |a historical data
|2 Other
650 _ 7 |a linear regression
|2 Other
650 _ 7 |a prediction
|2 Other
650 _ 7 |a real-world data
|2 Other
700 1 _ |a Edelmann, Dominic
|0 P:(DE-He78)92820b4867c955a04f642707ecf35b40
|b 1
|u dkfz
700 1 _ |a Kieser, Meinhard
|0 0000-0003-2402-4333
|b 2
773 _ _ |a 10.1002/bimj.202200023
|g p. 2200023
|0 PERI:(DE-600)1479920-0
|n 6
|p e2200023
|t Biometrical journal
|v 65
|y 2023
|x 0006-3452
909 C O |p VDB
|o oai:inrepo02.dkfz.de:277785
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)92820b4867c955a04f642707ecf35b40
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMETRICAL J : 2022
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21