001     277800
005     20240229155024.0
024 7 _ |a 10.1016/j.jbc.2023.105088
|2 doi
024 7 _ |a pmid:37495107
|2 pmid
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
037 _ _ |a DKFZ-2023-01511
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Nuskova, Hana
|0 P:(DE-He78)650b97543a016392ce35abfdd8f098e0
|b 0
|e First author
|u dkfz
245 _ _ |a Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome.
260 _ _ |a Bethesda, Md.
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1693990113_673
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B140#LA:B140# / 2023 Jul 24;299(9):105088
520 _ _ |a S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0) or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1 and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a HRAS
|2 Other
650 _ 7 |a LAMTOR1
|2 Other
650 _ 7 |a S-oleoylation
|2 Other
650 _ 7 |a S-palmitoylation
|2 Other
650 _ 7 |a S-stearoylation
|2 Other
650 _ 7 |a click chemistry
|2 Other
650 _ 7 |a lipid
|2 Other
650 _ 7 |a posttranslational modification
|2 Other
650 _ 7 |a protein S-acylation
|2 Other
650 _ 7 |a transferrin receptor 1
|2 Other
700 1 _ |a Cortizo, Fabiola Garcia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schwenker, Lena Sophie
|0 P:(DE-He78)9eb61e17d34b2391f314d3a90cd9ae7f
|b 2
700 1 _ |a Sachsenheimer, Timo
|b 3
700 1 _ |a Diakonov, Egor
|0 P:(DE-He78)41905c3083c2b0611a36ad3135e02da1
|b 4
|u dkfz
700 1 _ |a Tiebe, Marcel
|0 P:(DE-He78)cc5307608cb2e8cfe9b95954e9ab8c39
|b 5
700 1 _ |a Schneider, Martin
|0 P:(DE-He78)0d37cc734b95fed555f2244d6fee6320
|b 6
|u dkfz
700 1 _ |a Lohbeck, Jasmin
|0 P:(DE-He78)e61dcfcbebaf26a3144f45b3482f7385
|b 7
|u dkfz
700 1 _ |a Reid, Carissa
|0 P:(DE-He78)a06ba45fcf672f893e3d0946fe3f3483
|b 8
|u dkfz
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 9
|u dkfz
700 1 _ |a Helm, Dominic
|0 P:(DE-He78)daaed5a5b968028e6e95d273150d5ab1
|b 10
|u dkfz
700 1 _ |a Brügger, Britta
|b 11
700 1 _ |a Miller, Aubry K
|0 P:(DE-He78)f0af962ddbc82430e947390b2f3f6e49
|b 12
|u dkfz
700 1 _ |a Teleman, Aurelio
|0 P:(DE-He78)5ebc16fd8019dbfde58e0125b001b599
|b 13
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.jbc.2023.105088
|g p. 105088 -
|0 PERI:(DE-600)1474604-9
|n 9
|p 105088
|t The journal of biological chemistry
|v 299
|y 2023
|x 0021-9258
909 C O |p VDB
|o oai:inrepo02.dkfz.de:277800
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)650b97543a016392ce35abfdd8f098e0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)9eb61e17d34b2391f314d3a90cd9ae7f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)41905c3083c2b0611a36ad3135e02da1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)cc5307608cb2e8cfe9b95954e9ab8c39
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)0d37cc734b95fed555f2244d6fee6320
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)e61dcfcbebaf26a3144f45b3482f7385
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)a06ba45fcf672f893e3d0946fe3f3483
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)daaed5a5b968028e6e95d273150d5ab1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)f0af962ddbc82430e947390b2f3f6e49
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)5ebc16fd8019dbfde58e0125b001b599
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2023
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
920 2 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
920 1 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
920 1 _ |0 I:(DE-He78)W120-20160331
|k W120
|l Proteomics
|x 1
920 1 _ |0 I:(DE-He78)A390-20160331
|k A390
|l AG Wirkstoffforschung
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 3
920 0 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B140-20160331
980 _ _ |a I:(DE-He78)W120-20160331
980 _ _ |a I:(DE-He78)A390-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21