000277803 001__ 277803
000277803 005__ 20240229155025.0
000277803 0247_ $$2doi$$a10.1007/s00259-023-06339-5
000277803 0247_ $$2pmid$$apmid:37493665
000277803 0247_ $$2ISSN$$a1619-7070
000277803 0247_ $$2ISSN$$a0340-6997
000277803 0247_ $$2ISSN$$a1432-105X
000277803 0247_ $$2ISSN$$a1619-7089
000277803 037__ $$aDKFZ-2023-01514
000277803 041__ $$aEnglish
000277803 082__ $$a610
000277803 1001_ $$0P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aSachpekidis, Christos$$b0$$eFirst author$$udkfz
000277803 245__ $$aApplication of an artificial intelligence-based tool in [18F]FDG PET/CT for the assessment of bone marrow involvement in multiple myeloma.
000277803 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2023
000277803 3367_ $$2DRIVER$$aarticle
000277803 3367_ $$2DataCite$$aOutput Types/Journal article
000277803 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698070323_11319
000277803 3367_ $$2BibTeX$$aARTICLE
000277803 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000277803 3367_ $$00$$2EndNote$$aJournal Article
000277803 500__ $$a#EA:E060#LA:E060# / 2023 Oct;50(12):3697-3708
000277803 520__ $$a[18F]FDG PET/CT is an imaging modality of high performance in multiple myeloma (MM). Nevertheless, the inter-observer reproducibility in PET/CT scan interpretation may be hampered by the different patterns of bone marrow (BM) infiltration in the disease. Although many approaches have been recently developed to address the issue of standardization, none can yet be considered a standard method in the interpretation of PET/CT. We herein aim to validate a novel three-dimensional deep learning-based tool on PET/CT images for automated assessment of the intensity of BM metabolism in MM patients.Whole-body [18F]FDG PET/CT scans of 35 consecutive, previously untreated MM patients were studied. All patients were investigated in the context of an open-label, multicenter, randomized, active-controlled, phase 3 trial (GMMG-HD7). Qualitative (visual) analysis classified the PET/CT scans into three groups based on the presence and number of focal [18F]FDG-avid lesions as well as the degree of diffuse [18F]FDG uptake in the BM. The proposed automated method for BM metabolism assessment is based on an initial CT-based segmentation of the skeleton, its transfer to the SUV PET images, the subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, six different SUV thresholds (Approaches 1-6) were applied for the definition of pathological tracer uptake in the skeleton [Approach 1: liver SUVmedian × 1.1 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 2: liver SUVmedian × 1.5 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 3: liver SUVmedian × 2 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 4: ≥ 2.5. Approach 5: ≥ 2.5 (axial skeleton), ≥ 2.0 (extremities). Approach 6: SUVmax liver]. Using the resulting masks, subsequent calculations of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in each patient were performed. A correlation analysis was performed between the automated PET values and the results of the visual PET/CT analysis as well as the histopathological, cytogenetical, and clinical data of the patients.BM segmentation and calculation of MTV and TLG after the application of the deep learning tool were feasible in all patients. A significant positive correlation (p < 0.05) was observed between the results of the visual analysis of the PET/CT scans for the three patient groups and the MTV and TLG values after the employment of all six [18F]FDG uptake thresholds. In addition, there were significant differences between the three patient groups with regard to their MTV and TLG values for all applied thresholds of pathological tracer uptake. Furthermore, we could demonstrate a significant, moderate, positive correlation of BM plasma cell infiltration and plasma levels of β2-microglobulin with the automated quantitative PET/CT parameters MTV and TLG after utilization of Approaches 1, 2, 4, and 5.The automated, volumetric, whole-body PET/CT assessment of the BM metabolic activity in MM is feasible with the herein applied method and correlates with clinically relevant parameters in the disease. This methodology offers a potentially reliable tool in the direction of optimization and standardization of PET/CT interpretation in MM. Based on the present promising findings, the deep learning-based approach will be further evaluated in future prospective studies with larger patient cohorts.
000277803 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000277803 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000277803 650_7 $$2Other$$aArtificial intelligence
000277803 650_7 $$2Other$$aDeep learning
000277803 650_7 $$2Other$$aMetabolic tumor volume (MTV)
000277803 650_7 $$2Other$$aMultiple myeloma
000277803 650_7 $$2Other$$aObjective quantification
000277803 650_7 $$2Other$$aTotal lesion glycolysis (TLG)
000277803 650_7 $$2Other$$a[18F]FDG PET/CT
000277803 7001_ $$aEnqvist, Olof$$b1
000277803 7001_ $$aUlén, Johannes$$b2
000277803 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b3$$udkfz
000277803 7001_ $$0P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0$$aPan, Leyun$$b4$$udkfz
000277803 7001_ $$aJauch, Anna$$b5
000277803 7001_ $$aHajiyianni, Marina$$b6
000277803 7001_ $$aJohn, Lukas$$b7
000277803 7001_ $$aWeinhold, Niels$$b8
000277803 7001_ $$aSauer, Sandra$$b9
000277803 7001_ $$aGoldschmidt, Hartmut$$b10
000277803 7001_ $$aEdenbrandt, Lars$$b11
000277803 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b12$$eLast author$$udkfz
000277803 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-023-06339-5$$n12$$p3697-3708$$tEuropean journal of nuclear medicine and molecular imaging$$v50$$x1619-7070$$y2023
000277803 909CO $$ooai:inrepo02.dkfz.de:277803$$pVDB
000277803 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000277803 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000277803 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000277803 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000277803 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000277803 9141_ $$y2023
000277803 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-23$$wger
000277803 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-23$$wger
000277803 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000277803 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000277803 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NUCL MED MOL I : 2022$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-23
000277803 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J NUCL MED MOL I : 2022$$d2023-08-23
000277803 9202_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000277803 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000277803 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000277803 9200_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000277803 980__ $$ajournal
000277803 980__ $$aVDB
000277803 980__ $$aI:(DE-He78)E060-20160331
000277803 980__ $$aI:(DE-He78)C060-20160331
000277803 980__ $$aUNRESTRICTED