001     277810
005     20240229155025.0
024 7 _ |a 10.1038/s41467-023-40235-8
|2 doi
024 7 _ |a pmid:37500667
|2 pmid
024 7 _ |a altmetric:152065718
|2 altmetric
037 _ _ |a DKFZ-2023-01521
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Sigaud, Romain
|0 P:(DE-He78)a5e60710c7515b3e1de74ced6928a9dd
|b 0
|e First author
|u dkfz
245 _ _ |a MAPK inhibitor sensitivity scores predict sensitivity driven by the immune infiltration in pediatric low-grade gliomas.
260 _ _ |a [London]
|c 2023
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1690550187_11049
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B310#LA:B310#
520 _ _ |a Pediatric low-grade gliomas (pLGG) show heterogeneous responses to MAPK inhibitors (MAPKi) in clinical trials. Thus, more complex stratification biomarkers are needed to identify patients likely to benefit from MAPKi therapy. Here, we identify MAPK-related genes enriched in MAPKi-sensitive cell lines using the GDSC dataset and apply them to calculate class-specific MAPKi sensitivity scores (MSSs) via single-sample gene set enrichment analysis. The MSSs discriminate MAPKi-sensitive and non-sensitive cells in the GDSC dataset and significantly correlate with response to MAPKi in an independent PDX dataset. The MSSs discern gliomas with varying MAPK alterations and are higher in pLGG compared to other pediatric CNS tumors. Heterogenous MSSs within pLGGs with the same MAPK alteration identify proportions of potentially sensitive patients. The MEKi MSS predicts treatment response in a small set of pLGG patients treated with trametinib. High MSSs correlate with a higher immune cell infiltration, with high expression in the microglia compartment in single-cell RNA sequencing data, while low MSSs correlate with low immune infiltration and increased neuronal score. The MSSs represent predictive tools for the stratification of pLGG patients and should be prospectively validated in clinical trials. Our data supports a role for microglia in the response to MAPKi.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Albert, Thomas K
|0 0000-0002-2488-0706
|b 1
700 1 _ |a Hess, Caroline
|0 0009-0001-7436-5067
|b 2
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 3
|u dkfz
700 1 _ |a Winkler, Nadine
|0 P:(DE-He78)4eea644f475edc544c770c6842820c71
|b 4
|u dkfz
700 1 _ |a Kocher, Daniela
|0 P:(DE-He78)4679059a19b1f3cd341bd27d0ddb7c45
|b 5
|u dkfz
700 1 _ |a Walter, Carolin
|b 6
700 1 _ |a Münter, Daniel
|0 0000-0001-8823-0238
|b 7
700 1 _ |a Selt, Florian
|0 P:(DE-He78)a23e88cc676489fe05be8c178ceaf58e
|b 8
|u dkfz
700 1 _ |a Usta, Diren
|0 P:(DE-He78)7d5cd95cbedad26188a1df9eeca335ef
|b 9
|u dkfz
700 1 _ |a Ecker, Jonas
|0 P:(DE-He78)3de637452ba900e2bdd359b8f41953bf
|b 10
|u dkfz
700 1 _ |a Brentrup, Angela
|b 11
700 1 _ |a Hasselblatt, Martin
|b 12
700 1 _ |a Thomas, Christian
|0 0000-0002-6642-7774
|b 13
700 1 _ |a Varghese, Julian
|b 14
700 1 _ |a Capper, David
|b 15
700 1 _ |a Thomale, Ulrich W
|b 16
700 1 _ |a Hernáiz Driever, Pablo
|0 0000-0003-3135-3872
|b 17
700 1 _ |a Simon, Michèle
|0 0000-0001-9094-3632
|b 18
700 1 _ |a Horn, Svea
|b 19
700 1 _ |a Herz, Nina Annika
|b 20
700 1 _ |a Koch, Arend
|b 21
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 22
|u dkfz
700 1 _ |a Hamelmann, Stefan
|0 P:(DE-He78)875b52cddc351d6eca86de4f404f4631
|b 23
|u dkfz
700 1 _ |a Faria-Andrade, Augusto
|0 0000-0001-5866-0501
|b 24
700 1 _ |a Jabado, Nada
|0 0000-0003-2485-3692
|b 25
700 1 _ |a Schuhmann, Martin U
|0 0000-0001-9843-7486
|b 26
700 1 _ |a Schouten-van Meeteren, Antoinette Y N
|b 27
700 1 _ |a Hoving, Eelco
|0 0000-0002-5587-0439
|b 28
700 1 _ |a Brummer, Tilman
|0 P:(DE-He78)492a2f9f2a95bcb0609e37d1ce1e13a9
|b 29
|u dkfz
700 1 _ |a van Tilburg, Cornelis Martinus
|0 P:(DE-He78)a6b5fcabf661bef95109dbee87dc5271
|b 30
|u dkfz
700 1 _ |a Pfister, Stefan M
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 31
|u dkfz
700 1 _ |a Witt, Olaf
|0 P:(DE-He78)143af26de9d57bf624771616318aaf7c
|b 32
|u dkfz
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 33
|u dkfz
700 1 _ |a Kerl, Kornelius
|0 0000-0002-5676-8102
|b 34
700 1 _ |a Milde, Till
|0 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
|b 35
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41467-023-40235-8
|g Vol. 14, no. 1, p. 4533
|0 PERI:(DE-600)2553671-0
|n 1
|p 4533
|t Nature Communications
|v 14
|y 2023
|x 2041-1723
909 C O |o oai:inrepo02.dkfz.de:277810
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a5e60710c7515b3e1de74ced6928a9dd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 0009-0001-7436-5067
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)4eea644f475edc544c770c6842820c71
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)4679059a19b1f3cd341bd27d0ddb7c45
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)a23e88cc676489fe05be8c178ceaf58e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)7d5cd95cbedad26188a1df9eeca335ef
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)3de637452ba900e2bdd359b8f41953bf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)875b52cddc351d6eca86de4f404f4631
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 29
|6 P:(DE-He78)492a2f9f2a95bcb0609e37d1ce1e13a9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 30
|6 P:(DE-He78)a6b5fcabf661bef95109dbee87dc5271
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 31
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 32
|6 P:(DE-He78)143af26de9d57bf624771616318aaf7c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 33
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 35
|6 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
920 2 _ |0 I:(DE-He78)B310-20160331
|k B310
|l KKE Pädiatrische Onkologie
|x 0
920 0 _ |0 I:(DE-He78)B310-20160331
|k B310
|l KKE Pädiatrische Onkologie
|x 0
920 1 _ |0 I:(DE-He78)B310-20160331
|k B310
|l KKE Pädiatrische Onkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 3
920 1 _ |0 I:(DE-He78)FR01-20160331
|k FR01
|l DKTK Koordinierungsstelle Freiburg
|x 4
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 5
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pädiatische Gliomforschung
|x 6
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B310-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a I:(DE-He78)FR01-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21