000277911 001__ 277911
000277911 005__ 20240229155027.0
000277911 0247_ $$2doi$$a10.3389/ijph.2023.1606097
000277911 0247_ $$2pmid$$apmid:37533684
000277911 0247_ $$2pmc$$apmc:PMC10391163
000277911 0247_ $$2ISSN$$a1661-8556
000277911 0247_ $$2ISSN$$a0044-3379
000277911 0247_ $$2ISSN$$a0303-8408
000277911 0247_ $$2ISSN$$a1420-911X
000277911 0247_ $$2ISSN$$a1661-8564
000277911 0247_ $$2ISSN$$a2296-4371
000277911 0247_ $$2altmetric$$aaltmetric:152405560
000277911 037__ $$aDKFZ-2023-01570
000277911 041__ $$aEnglish
000277911 082__ $$a610
000277911 1001_ $$aVonneilich, Nico$$b0
000277911 245__ $$aAssociations of Migration, Socioeconomic Position and Social Relations With Depressive Symptoms - Analyses of the German National Cohort Baseline Data.
000277911 260__ $$a[Lausanne]$$bFrontiers Media S.A.$$c2023
000277911 3367_ $$2DRIVER$$aarticle
000277911 3367_ $$2DataCite$$aOutput Types/Journal article
000277911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1691067230_20939
000277911 3367_ $$2BibTeX$$aARTICLE
000277911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000277911 3367_ $$00$$2EndNote$$aJournal Article
000277911 520__ $$aObjectives: We analyze whether the prevalence of depressive symptoms differs among various migrant and non-migrant populations in Germany and to what extent these differences can be attributed to socioeconomic position (SEP) and social relations. Methods: The German National Cohort health study (NAKO) is a prospective multicenter cohort study (N = 204,878). Migration background (assessed based on citizenship and country of birth of both participant and parents) was used as independent variable, age, sex, Social Network Index, the availability of emotional support, SEP (relative income position and educational status) and employment status were introduced as covariates and depressive symptoms (PHQ-9) as dependent variable in logistic regression models. Results: Increased odds ratios of depressive symptoms were found in all migrant subgroups compared to non-migrants and varied regarding regions of origins. Elevated odds ratios decreased when SEP and social relations were included. Attenuations varied across migrant subgroups. Conclusion: The gap in depressive symptoms can partly be attributed to SEP and social relations, with variations between migrant subgroups. The integration paradox is likely to contribute to the explanation of the results. Future studies need to consider heterogeneity among migrant subgroups whenever possible.
000277911 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000277911 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000277911 650_7 $$2Other$$aGerman National Cohort
000277911 650_7 $$2Other$$aNAKO
000277911 650_7 $$2Other$$adepressive symptoms
000277911 650_7 $$2Other$$amigrant health
000277911 650_7 $$2Other$$amigration
000277911 650_7 $$2Other$$asocial integration
000277911 650_7 $$2Other$$asocial relations
000277911 650_7 $$2Other$$asocioeconomic position
000277911 7001_ $$aBecher, Heiko$$b1
000277911 7001_ $$aBohn, Barbara$$b2
000277911 7001_ $$aBrandes, Berit$$b3
000277911 7001_ $$aCastell, Stefanie$$b4
000277911 7001_ $$aDeckert, Andreas$$b5
000277911 7001_ $$aDragano, Nico$$b6
000277911 7001_ $$aFranzke, Claus-Werner$$b7
000277911 7001_ $$aFührer, Amand$$b8
000277911 7001_ $$aGastell, Sylvia$$b9
000277911 7001_ $$0P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aGreiser, Halina$$b10$$udkfz
000277911 7001_ $$aKeil, Thomas$$b11
000277911 7001_ $$aKlett-Tammen, Carolina$$b12
000277911 7001_ $$0P:(DE-He78)13aa5fe9d9961c9fd67193befb0dcf88$$aKoch-Gallenkamp, Lena$$b13$$udkfz
000277911 7001_ $$aKrist, Lilian$$b14
000277911 7001_ $$aLeitzmann, Michael$$b15
000277911 7001_ $$aMeinke-Franze, Claudia$$b16
000277911 7001_ $$aMikolajczyk, Rafael$$b17
000277911 7001_ $$aMoreno Velasquez, Ilais$$b18
000277911 7001_ $$aObi, Nadia$$b19
000277911 7001_ $$aPeters, Annette$$b20
000277911 7001_ $$aPischon, Tobias$$b21
000277911 7001_ $$aReuter, Marvin$$b22
000277911 7001_ $$aSchikowski, Tamara$$b23
000277911 7001_ $$aSchmidt, Börge$$b24
000277911 7001_ $$aSchulze, Matthias$$b25
000277911 7001_ $$0P:(DE-He78)772c4cbbab31f1b71f814e8ae9e0ed51$$aSergeev, Dmitry$$b26$$udkfz
000277911 7001_ $$aStang, Andreas$$b27
000277911 7001_ $$aVölzke, Henry$$b28
000277911 7001_ $$aWiessner, Christian$$b29
000277911 7001_ $$aZeeb, Hajo$$b30
000277911 7001_ $$aLüdecke, Daniel$$b31
000277911 7001_ $$avon dem Knesebeck, Olaf$$b32
000277911 773__ $$0PERI:(DE-600)2276416-1$$a10.3389/ijph.2023.1606097$$gVol. 68, p. 1606097$$p1606097$$tInternational journal of public health$$v68$$x1661-8556$$y2023
000277911 909CO $$ooai:inrepo02.dkfz.de:277911$$pVDB
000277911 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000277911 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)13aa5fe9d9961c9fd67193befb0dcf88$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000277911 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)772c4cbbab31f1b71f814e8ae9e0ed51$$aDeutsches Krebsforschungszentrum$$b26$$kDKFZ
000277911 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000277911 9141_ $$y2023
000277911 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-17$$wger
000277911 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-17$$wger
000277911 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-17
000277911 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000277911 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000277911 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-17
000277911 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-17
000277911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J PUBLIC HEALTH : 2022$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-22T10:38:49Z
000277911 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-22T10:38:49Z
000277911 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2023-05-22T10:38:49Z
000277911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-25
000277911 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
000277911 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000277911 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1
000277911 980__ $$ajournal
000277911 980__ $$aVDB
000277911 980__ $$aI:(DE-He78)C020-20160331
000277911 980__ $$aI:(DE-He78)C070-20160331
000277911 980__ $$aUNRESTRICTED