Home > Publications database > Associations of Migration, Socioeconomic Position and Social Relations With Depressive Symptoms - Analyses of the German National Cohort Baseline Data. > print |
001 | 277911 | ||
005 | 20240229155027.0 | ||
024 | 7 | _ | |a 10.3389/ijph.2023.1606097 |2 doi |
024 | 7 | _ | |a pmid:37533684 |2 pmid |
024 | 7 | _ | |a pmc:PMC10391163 |2 pmc |
024 | 7 | _ | |a 1661-8556 |2 ISSN |
024 | 7 | _ | |a 0044-3379 |2 ISSN |
024 | 7 | _ | |a 0303-8408 |2 ISSN |
024 | 7 | _ | |a 1420-911X |2 ISSN |
024 | 7 | _ | |a 1661-8564 |2 ISSN |
024 | 7 | _ | |a 2296-4371 |2 ISSN |
024 | 7 | _ | |a altmetric:152405560 |2 altmetric |
037 | _ | _ | |a DKFZ-2023-01570 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Vonneilich, Nico |b 0 |
245 | _ | _ | |a Associations of Migration, Socioeconomic Position and Social Relations With Depressive Symptoms - Analyses of the German National Cohort Baseline Data. |
260 | _ | _ | |a [Lausanne] |c 2023 |b Frontiers Media S.A. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1691067230_20939 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Objectives: We analyze whether the prevalence of depressive symptoms differs among various migrant and non-migrant populations in Germany and to what extent these differences can be attributed to socioeconomic position (SEP) and social relations. Methods: The German National Cohort health study (NAKO) is a prospective multicenter cohort study (N = 204,878). Migration background (assessed based on citizenship and country of birth of both participant and parents) was used as independent variable, age, sex, Social Network Index, the availability of emotional support, SEP (relative income position and educational status) and employment status were introduced as covariates and depressive symptoms (PHQ-9) as dependent variable in logistic regression models. Results: Increased odds ratios of depressive symptoms were found in all migrant subgroups compared to non-migrants and varied regarding regions of origins. Elevated odds ratios decreased when SEP and social relations were included. Attenuations varied across migrant subgroups. Conclusion: The gap in depressive symptoms can partly be attributed to SEP and social relations, with variations between migrant subgroups. The integration paradox is likely to contribute to the explanation of the results. Future studies need to consider heterogeneity among migrant subgroups whenever possible. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a German National Cohort |2 Other |
650 | _ | 7 | |a NAKO |2 Other |
650 | _ | 7 | |a depressive symptoms |2 Other |
650 | _ | 7 | |a migrant health |2 Other |
650 | _ | 7 | |a migration |2 Other |
650 | _ | 7 | |a social integration |2 Other |
650 | _ | 7 | |a social relations |2 Other |
650 | _ | 7 | |a socioeconomic position |2 Other |
700 | 1 | _ | |a Becher, Heiko |b 1 |
700 | 1 | _ | |a Bohn, Barbara |b 2 |
700 | 1 | _ | |a Brandes, Berit |b 3 |
700 | 1 | _ | |a Castell, Stefanie |b 4 |
700 | 1 | _ | |a Deckert, Andreas |b 5 |
700 | 1 | _ | |a Dragano, Nico |b 6 |
700 | 1 | _ | |a Franzke, Claus-Werner |b 7 |
700 | 1 | _ | |a Führer, Amand |b 8 |
700 | 1 | _ | |a Gastell, Sylvia |b 9 |
700 | 1 | _ | |a Greiser, Halina |0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b |b 10 |u dkfz |
700 | 1 | _ | |a Keil, Thomas |b 11 |
700 | 1 | _ | |a Klett-Tammen, Carolina |b 12 |
700 | 1 | _ | |a Koch-Gallenkamp, Lena |0 P:(DE-He78)13aa5fe9d9961c9fd67193befb0dcf88 |b 13 |u dkfz |
700 | 1 | _ | |a Krist, Lilian |b 14 |
700 | 1 | _ | |a Leitzmann, Michael |b 15 |
700 | 1 | _ | |a Meinke-Franze, Claudia |b 16 |
700 | 1 | _ | |a Mikolajczyk, Rafael |b 17 |
700 | 1 | _ | |a Moreno Velasquez, Ilais |b 18 |
700 | 1 | _ | |a Obi, Nadia |b 19 |
700 | 1 | _ | |a Peters, Annette |b 20 |
700 | 1 | _ | |a Pischon, Tobias |b 21 |
700 | 1 | _ | |a Reuter, Marvin |b 22 |
700 | 1 | _ | |a Schikowski, Tamara |b 23 |
700 | 1 | _ | |a Schmidt, Börge |b 24 |
700 | 1 | _ | |a Schulze, Matthias |b 25 |
700 | 1 | _ | |a Sergeev, Dmitry |0 P:(DE-He78)772c4cbbab31f1b71f814e8ae9e0ed51 |b 26 |u dkfz |
700 | 1 | _ | |a Stang, Andreas |b 27 |
700 | 1 | _ | |a Völzke, Henry |b 28 |
700 | 1 | _ | |a Wiessner, Christian |b 29 |
700 | 1 | _ | |a Zeeb, Hajo |b 30 |
700 | 1 | _ | |a Lüdecke, Daniel |b 31 |
700 | 1 | _ | |a von dem Knesebeck, Olaf |b 32 |
773 | _ | _ | |a 10.3389/ijph.2023.1606097 |g Vol. 68, p. 1606097 |0 PERI:(DE-600)2276416-1 |p 1606097 |t International journal of public health |v 68 |y 2023 |x 1661-8556 |
909 | C | O | |o oai:inrepo02.dkfz.de:277911 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)13aa5fe9d9961c9fd67193befb0dcf88 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 26 |6 P:(DE-He78)772c4cbbab31f1b71f814e8ae9e0ed51 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2022-11-17 |w ger |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2022-11-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-17 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-17 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-17 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J PUBLIC HEALTH : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-22T10:38:49Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-22T10:38:49Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Double anonymous peer review |d 2023-05-22T10:38:49Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1180 |2 StatID |b Current Contents - Social and Behavioral Sciences |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0130 |2 StatID |b Social Sciences Citation Index |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-25 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-25 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|