000278354 001__ 278354
000278354 005__ 20240918112042.0
000278354 0247_ $$2doi$$a10.1038/s41598-023-38685-7
000278354 0247_ $$2pmid$$apmid:37550322
000278354 0247_ $$2altmetric$$aaltmetric:152632587
000278354 037__ $$aDKFZ-2023-01608
000278354 041__ $$aEnglish
000278354 082__ $$a600
000278354 1001_ $$aPierzynska-Mach, Agnieszka$$b0
000278354 245__ $$aImaging-based study demonstrates how the DEK nanoscale distribution differentially correlates with epigenetic marks in a breast cancer model.
000278354 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2023
000278354 3367_ $$2DRIVER$$aarticle
000278354 3367_ $$2DataCite$$aOutput Types/Journal article
000278354 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726651223_5616
000278354 3367_ $$2BibTeX$$aARTICLE
000278354 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278354 3367_ $$00$$2EndNote$$aJournal Article
000278354 520__ $$aEpigenetic dysregulation of chromatin is one of the hallmarks of cancer development and progression, and it is continuously investigated as a potential general bio-marker of this complex disease. One of the nuclear factors involved in gene regulation is the unique DEK protein-a histone chaperon modulating chromatin topology. DEK expression levels increase significantly from normal to cancer cells, hence raising the possibility of using DEK as a tumor marker. Although DEK is known to be implicated in epigenetic and transcriptional regulation, the details of these interactions and their relevance in cancer development remain largely elusive. In this work, we investigated the spatial correlation between the nuclear distribution of DEK and chromatin patterns-alongside breast cancer progression-leveraging image cross-correlation spectroscopy (ICCS) coupled with Proximity Ligation Assay (PLA) analysis. We performed our study on the model based on three well-established human breast cell lines to consider this tumor's heterogeneity (MCF10A, MCF7, and MDA-MB-231 cells). Our results show that overexpression of DEK correlates with the overall higher level of spatial proximity between DEK and histone marks corresponding to gene promoters regions (H3K9ac, H3K4me3), although it does not correlate with spatial proximity between DEK and gene enhancers (H3K27ac). Additionally, we observed that colocalizing fractions of DEK and histone marks are lower for the non-invasive cell subtype than for the highly invasive cell line (MDA-MB-231). Thus, this study suggests that the role of DEK on transcriptionally active chromatin regions varies depending on the subtype of the breast cancer cell line.
000278354 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000278354 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000278354 7001_ $$aCainero, Isotta$$b1
000278354 7001_ $$aOneto, Michele$$b2
000278354 7001_ $$0P:(DE-HGF)0$$aFerrando-May, Elisa$$b3
000278354 7001_ $$aLanzanò, Luca$$b4
000278354 7001_ $$aDiaspro, Alberto$$b5
000278354 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-023-38685-7$$gVol. 13, no. 1, p. 12749$$n1$$p12749$$tScientific reports$$v13$$x2045-2322$$y2023
000278354 909CO $$ooai:inrepo02.dkfz.de:278354$$pVDB
000278354 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000278354 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000278354 9141_ $$y2023
000278354 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-08T09:38:07Z
000278354 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-30
000278354 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
000278354 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
000278354 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
000278354 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
000278354 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:11:06Z
000278354 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:11:06Z
000278354 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:11:06Z
000278354 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
000278354 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
000278354 9201_ $$0I:(DE-He78)W650-20160331$$kW650$$lEnabling Technology$$x0
000278354 980__ $$ajournal
000278354 980__ $$aVDB
000278354 980__ $$aI:(DE-He78)W650-20160331
000278354 980__ $$aUNRESTRICTED