000278401 001__ 278401
000278401 005__ 20240229155034.0
000278401 0247_ $$2doi$$a10.3390/nu15153322
000278401 0247_ $$2pmid$$apmid:37571259
000278401 0247_ $$2pmc$$apmc:PMC10421322
000278401 0247_ $$2altmetric$$aaltmetric:152019838
000278401 037__ $$aDKFZ-2023-01635
000278401 041__ $$aEnglish
000278401 082__ $$a610
000278401 1001_ $$0P:(DE-He78)0b48ce513fe49013263657450a12f870$$aBajracharya, Rashmita$$b0$$eFirst author$$udkfz
000278401 245__ $$aFood Sources of Animal Protein in Relation to Overall and Cause-Specific Mortality-Causal Associations or Confounding? An Analysis of the EPIC-Heidelberg Cohort.
000278401 260__ $$aBasel$$bMDPI$$c2023
000278401 3367_ $$2DRIVER$$aarticle
000278401 3367_ $$2DataCite$$aOutput Types/Journal article
000278401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692013077_20939
000278401 3367_ $$2BibTeX$$aARTICLE
000278401 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278401 3367_ $$00$$2EndNote$$aJournal Article
000278401 500__ $$a#EA:C020#LA:C020#
000278401 520__ $$aWhile prior prospective iso-caloric substitution studies show a robust association between higher intake of animal protein and risk of mortality, associations observed for mortality risk in relation to major food sources of animal protein have been generally more diverse. We used the EPIC-Heidelberg cohort to examine if confounding, notably, by smoking, adiposity, or alcohol intake, could cause inconsistencies in estimated mortality hazard ratios (HR) related to intake levels of different types of meat and dairy products. Higher intakes of red or processed meats, and lower intakes of milk or cheese, were observed among current heavy smokers, participants with obesity, or heavy alcohol drinkers. Adjusting for age, sex, and total energy intake, risk models showed increased all-cause, cardiovascular, and cancer-related mortality with higher red or processed meat intakes (HR ranging from 1.25 [95% confidence interval = 1.15-1.36] to 1.76 [1.46-2.12] comparing highest to lowest tertiles), but reduced risks for poultry, milk, or cheese (HR ranging from 0.55 [0.43-0.72] to 0.88 [0.81-0.95]). Adjusting further for smoking history, adiposity indices, alcohol consumption, and physical activity levels, the statistical significance of all these observed was erased, except for the association of processed meat intake with cardiovascular mortality (HR = 1.36 [CI = 1.13-1.64]) and cheese intake with cancer mortality (HR = 0.86 [0.76-0.98]), which, however, were substantially attenuated. These findings suggest heavy confounding and provide little support for the hypothesis that animal protein, as a nutrient, is a major determinant of mortality risk.
000278401 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000278401 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000278401 650_7 $$2Other$$adairy
000278401 650_7 $$2Other$$amortality
000278401 650_7 $$2Other$$apoultry
000278401 650_7 $$2Other$$aprocessed meat
000278401 650_7 $$2Other$$ared meat
000278401 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b1$$udkfz
000278401 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b2$$eLast author$$udkfz
000278401 773__ $$0PERI:(DE-600)2518386-2$$a10.3390/nu15153322$$gVol. 15, no. 15, p. 3322 -$$n15$$p3322$$tNutrients$$v15$$x2072-6643$$y2023
000278401 909CO $$ooai:inrepo02.dkfz.de:278401$$pVDB
000278401 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0b48ce513fe49013263657450a12f870$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000278401 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000278401 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000278401 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000278401 9141_ $$y2023
000278401 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-27T10:32:17Z
000278401 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-30
000278401 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
000278401 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
000278401 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
000278401 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
000278401 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUTRIENTS : 2022$$d2023-08-23
000278401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000278401 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000278401 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-23
000278401 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:20Z
000278401 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:20Z
000278401 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:20Z
000278401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000278401 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-23
000278401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000278401 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNUTRIENTS : 2022$$d2023-08-23
000278401 9202_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000278401 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000278401 9200_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000278401 980__ $$ajournal
000278401 980__ $$aVDB
000278401 980__ $$aI:(DE-He78)C020-20160331
000278401 980__ $$aUNRESTRICTED