001     278401
005     20240229155034.0
024 7 _ |a 10.3390/nu15153322
|2 doi
024 7 _ |a pmid:37571259
|2 pmid
024 7 _ |a pmc:PMC10421322
|2 pmc
024 7 _ |a altmetric:152019838
|2 altmetric
037 _ _ |a DKFZ-2023-01635
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bajracharya, Rashmita
|0 P:(DE-He78)0b48ce513fe49013263657450a12f870
|b 0
|e First author
|u dkfz
245 _ _ |a Food Sources of Animal Protein in Relation to Overall and Cause-Specific Mortality-Causal Associations or Confounding? An Analysis of the EPIC-Heidelberg Cohort.
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692013077_20939
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C020#LA:C020#
520 _ _ |a While prior prospective iso-caloric substitution studies show a robust association between higher intake of animal protein and risk of mortality, associations observed for mortality risk in relation to major food sources of animal protein have been generally more diverse. We used the EPIC-Heidelberg cohort to examine if confounding, notably, by smoking, adiposity, or alcohol intake, could cause inconsistencies in estimated mortality hazard ratios (HR) related to intake levels of different types of meat and dairy products. Higher intakes of red or processed meats, and lower intakes of milk or cheese, were observed among current heavy smokers, participants with obesity, or heavy alcohol drinkers. Adjusting for age, sex, and total energy intake, risk models showed increased all-cause, cardiovascular, and cancer-related mortality with higher red or processed meat intakes (HR ranging from 1.25 [95% confidence interval = 1.15-1.36] to 1.76 [1.46-2.12] comparing highest to lowest tertiles), but reduced risks for poultry, milk, or cheese (HR ranging from 0.55 [0.43-0.72] to 0.88 [0.81-0.95]). Adjusting further for smoking history, adiposity indices, alcohol consumption, and physical activity levels, the statistical significance of all these observed was erased, except for the association of processed meat intake with cardiovascular mortality (HR = 1.36 [CI = 1.13-1.64]) and cheese intake with cancer mortality (HR = 0.86 [0.76-0.98]), which, however, were substantially attenuated. These findings suggest heavy confounding and provide little support for the hypothesis that animal protein, as a nutrient, is a major determinant of mortality risk.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a dairy
|2 Other
650 _ 7 |a mortality
|2 Other
650 _ 7 |a poultry
|2 Other
650 _ 7 |a processed meat
|2 Other
650 _ 7 |a red meat
|2 Other
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 1
|u dkfz
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.3390/nu15153322
|g Vol. 15, no. 15, p. 3322 -
|0 PERI:(DE-600)2518386-2
|n 15
|p 3322
|t Nutrients
|v 15
|y 2023
|x 2072-6643
909 C O |o oai:inrepo02.dkfz.de:278401
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)0b48ce513fe49013263657450a12f870
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-08-27T10:32:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUTRIENTS : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:01:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:01:20Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:01:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NUTRIENTS : 2022
|d 2023-08-23
920 2 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 0 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21