TY - JOUR
AU - Klein, Sebastian
AU - Wuerdemann, Nora
AU - Demers, Imke
AU - Kopp, Christopher
AU - Quantius, Jennifer
AU - Charpentier, Arthur
AU - Tolkach, Yuri
AU - Brinker, Klaus
AU - Sharma, Shachi Jenny
AU - George, Julie
AU - Hess, Jochen
AU - Stögbauer, Fabian
AU - Lacko, Martin
AU - Struijlaart, Marijn
AU - van den Hout, Mari F C M
AU - Wagner, Steffen
AU - Wittekindt, Claus
AU - Langer, Christine
AU - Arens, Christoph
AU - Buettner, Reinhard
AU - Quaas, Alexander
AU - Reinhardt, Hans Christian
AU - Speel, Ernst-Jan
AU - Klussmann, Jens Peter
TI - Predicting HPV association using deep learning and regular H</td><td width="150">
TI - amp;E stains allows granular stratification of oropharyngeal cancer patients.
JO - npj digital medicine
VL - 6
IS - 1
SN - 2398-6352
CY - [Basingstoke]
PB - Macmillan Publishers Limited
M1 - DKFZ-2023-01684
SP - 152
PY - 2023
AB - Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining the need for accurate prognostic biomarkers. In this retrospective, multi-institutional study involving 906 patients from four centers and one database, we developed a deep learning algorithm (OPSCCnet), to analyze standard H</td><td width="150">
AB - E stains for the calculation of a patient-level score associated with prognosis, comparing it to combined HPV-DNA and p16-status. When comparing OPSCCnet to HPV-status, the algorithm showed a good overall performance with a mean area under the receiver operator curve (AUROC) = 0.83 (95
LB - PUB:(DE-HGF)16
C6 - pmid:37598255
C2 - pmc:PMC10439941
DO - DOI:10.1038/s41746-023-00901-z
UR - https://inrepo02.dkfz.de/record/278640
ER -