000278729 001__ 278729
000278729 005__ 20240229155037.0
000278729 0247_ $$2doi$$a10.3389/fimmu.2023.1194745
000278729 0247_ $$2pmid$$apmid:37609075
000278729 0247_ $$2pmc$$apmc:PMC10441575
000278729 0247_ $$2altmetric$$aaltmetric:152612749
000278729 037__ $$aDKFZ-2023-01700
000278729 041__ $$aEnglish
000278729 082__ $$a610
000278729 1001_ $$aAybey, Bogac$$b0
000278729 245__ $$aImmune cell type signature discovery and random forest classification for analysis of single cell gene expression datasets.
000278729 260__ $$aLausanne$$bFrontiers Media$$c2023
000278729 3367_ $$2DRIVER$$aarticle
000278729 3367_ $$2DataCite$$aOutput Types/Journal article
000278729 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692858339_10946
000278729 3367_ $$2BibTeX$$aARTICLE
000278729 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278729 3367_ $$00$$2EndNote$$aJournal Article
000278729 520__ $$aRobust immune cell gene expression signatures are central to the analysis of single cell studies. Nearly all known sets of immune cell signatures have been derived by making use of only single gene expression datasets. Utilizing the power of multiple integrated datasets could lead to high-quality immune cell signatures which could be used as superior inputs to machine learning-based cell type classification approaches.We established a novel workflow for the discovery of immune cell type signatures based primarily on gene-versus-gene expression similarity. It leverages multiple datasets, here seven single cell expression datasets from six different cancer types and resulted in eleven immune cell type-specific gene expression signatures. We used these to train random forest classifiers for immune cell type assignment for single-cell RNA-seq datasets. We obtained similar or better prediction results compared to commonly used methods for cell type assignment in independent benchmarking datasets. Our gene signature set yields higher prediction scores than other published immune cell type gene sets in random forest-based cell type classification. We further demonstrate how our approach helps to avoid bias in downstream statistical analyses by re-analysis of a published IFN stimulation experiment.We demonstrated the quality of our immune cell signatures and their strong performance in a random forest-based cell typing approach. We argue that classifying cells based on our comparably slim sets of genes accompanied by a random forest-based approach not only matches or outperforms widely used published approaches. It also facilitates unbiased downstream statistical analyses of differential gene expression between cell types for significantly more genes compared to previous cell classification algorithms.
000278729 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000278729 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000278729 650_7 $$2Other$$acell clustering
000278729 650_7 $$2Other$$acell type classification
000278729 650_7 $$2Other$$agene signature discovery
000278729 650_7 $$2Other$$amachine learning
000278729 650_7 $$2Other$$asingle-cell RNA sequencing
000278729 650_7 $$2Other$$atumor microenvironment
000278729 7001_ $$aZhao, Sheng$$b1
000278729 7001_ $$0P:(DE-He78)fc949170377b58098e46141d95c72661$$aBrors, Benedikt$$b2$$udkfz
000278729 7001_ $$aStaub, Eike$$b3
000278729 773__ $$0PERI:(DE-600)2606827-8$$a10.3389/fimmu.2023.1194745$$gVol. 14, p. 1194745$$p1194745$$tFrontiers in immunology$$v14$$x1664-3224$$y2023
000278729 909CO $$ooai:inrepo02.dkfz.de:278729$$pVDB
000278729 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fc949170377b58098e46141d95c72661$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000278729 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000278729 9141_ $$y2023
000278729 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T10:28:02Z
000278729 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T10:28:02Z
000278729 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-11T10:28:02Z
000278729 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000278729 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000278729 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-23
000278729 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-23
000278729 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT IMMUNOL : 2022$$d2023-10-26
000278729 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000278729 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000278729 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000278729 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-11T10:28:02Z
000278729 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000278729 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000278729 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT IMMUNOL : 2022$$d2023-10-26
000278729 9201_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x0
000278729 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000278729 980__ $$ajournal
000278729 980__ $$aVDB
000278729 980__ $$aI:(DE-He78)B330-20160331
000278729 980__ $$aI:(DE-He78)HD01-20160331
000278729 980__ $$aUNRESTRICTED