TY - JOUR AU - Thagaard, Jeppe AU - Broeckx, Glenn AU - Page, David B AU - Jahangir, Chowdhury Arif AU - Verbandt, Sara AU - Kos, Zuzana AU - Gupta, Rajarsi AU - Khiroya, Reena AU - Abduljabbar, Khalid AU - Acosta Haab, Gabriela AU - Acs, Balazs AU - Akturk, Guray AU - Almeida, Jonas S AU - Alvarado-Cabrero, Isabel AU - Amgad, Mohamed AU - Azmoudeh-Ardalan, Farid AU - Badve, Sunil AU - Baharun, Nurkhairul Bariyah AU - Balslev, Eva AU - Bellolio, Enrique R AU - Bheemaraju, Vydehi AU - Blenman, Kim Rm AU - Botinelly Mendonça Fujimoto, Luciana AU - Bouchmaa, Najat AU - Burgues, Octavio AU - Chardas, Alexandros AU - Chon U Cheang, Maggie AU - Ciompi, Francesco AU - Cooper, Lee Ad AU - Coosemans, An AU - Corredor, Germán AU - Dahl, Anders B AU - Dantas Portela, Flavio Luis AU - Deman, Frederik AU - Demaria, Sandra AU - Doré Hansen, Johan AU - Dudgeon, Sarah N AU - Ebstrup, Thomas AU - Elghazawy, Mahmoud AU - Fernandez-Martín, Claudio AU - Fox, Stephen B AU - Gallagher, William M AU - Giltnane, Jennifer M AU - Gnjatic, Sacha AU - Gonzalez-Ericsson, Paula I AU - Grigoriadis, Anita AU - Halama, Niels AU - Hanna, Matthew G AU - Harbhajanka, Aparna AU - Hart, Steven N AU - Hartman, Johan AU - Hauberg, Søren AU - Hewitt, Stephen AU - Hida, Akira I AU - Horlings, Hugo M AU - Husain, Zaheed AU - Hytopoulos, Evangelos AU - Irshad, Sheeba AU - Janssen, Emiel Am AU - Kahila, Mohamed AU - Kataoka, Tatsuki R AU - Kawaguchi, Kosuke AU - Kharidehal, Durga AU - Khramtsov, Andrey I AU - Kiraz, Umay AU - Kirtani, Pawan AU - Kodach, Liudmila L AU - Korski, Konstanty AU - Kovács, Anikó AU - Laenkholm, Anne-Vibeke AU - Lang-Schwarz, Corinna AU - Larsimont, Denis AU - Lennerz, Jochen K AU - Lerousseau, Marvin AU - Li, Xiaoxian AU - Ly, Amy AU - Madabhushi, Anant AU - Maley, Sai K AU - Manur Narasimhamurthy, Vidya AU - Marks, Douglas K AU - McDonald, Elizabeth S AU - Mehrotra, Ravi AU - Michiels, Stefan AU - Minhas, Fayyaz Ul Amir Afsar AU - Mittal, Shachi AU - Moore, David A AU - Mushtaq, Shamim AU - Nighat, Hussain AU - Papathomas, Thomas AU - Penault-Llorca, Frederique AU - Perera, Rashindrie D AU - Pinard, Christopher J AU - Pinto-Cardenas, Juan Carlos AU - Pruneri, Giancarlo AU - Pusztai, Lajos AU - Rahman, Arman AU - Rajpoot, Nasir Mahmood AU - Rapoport, Bernardo Leon AU - Rau, Tilman T AU - Reis-Filho, Jorge S AU - Ribeiro, Joana M AU - Rimm, David AU - Roslind, Anne AU - Vincent-Salomon, Anne AU - Salto-Tellez, Manuel AU - Saltz, Joel AU - Sayed, Shahin AU - Scott, Ely AU - Siziopikou, Kalliopi P AU - Sotiriou, Christos AU - Stenzinger, Albrecht AU - Sughayer, Maher A AU - Sur, Daniel AU - Fineberg, Susan AU - Symmans, Fraser AU - Tanaka, Sunao AU - Taxter, Timothy AU - Tejpar, Sabine AU - Teuwen, Jonas AU - Thompson, E Aubrey AU - Tramm, Trine AU - Tran, William T AU - van der Laak, Jeroen AU - van Diest, Paul J AU - Verghese, Gregory E AU - Viale, Giuseppe AU - Vieth, Michael AU - Wahab, Noorul AU - Walter, Thomas AU - Waumans, Yannick AU - Wen, Hannah Y AU - Yang, Wentao AU - Yuan, Yinyin AU - Zin, Reena Md AU - Adams, Sylvia AU - Bartlett, John AU - Loibl, Sibylle AU - Denkert, Carsten AU - Savas, Peter AU - Loi, Sherene AU - Salgado, Roberto AU - Specht Stovgaard, Elisabeth TI - Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: a report of the international immuno-oncology biomarker working group. JO - The journal of pathology VL - 260 IS - 5 SN - 0368-3494 CY - Bognor Regis [u.a.] PB - Wiley M1 - DKFZ-2023-01701 SP - 498-513 PY - 2023 N1 - 2023 Aug;260(5):498-513 AB - The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley </td><td width="150"> AB - Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. KW - deep learning (Other) KW - digital pathology (Other) KW - guidelines (Other) KW - image analysis (Other) KW - machine learning (Other) KW - pitfalls (Other) KW - prognostic biomarker (Other) KW - triple-negative breast cancer (Other) KW - tumor-infiltrating lymphocytes (Other) LB - PUB:(DE-HGF)16 C6 - pmid:37608772 DO - DOI:10.1002/path.6155 UR - https://inrepo02.dkfz.de/record/278730 ER -