% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Thagaard:278730, author = {J. Thagaard and G. Broeckx and D. B. Page and C. A. Jahangir and S. Verbandt and Z. Kos and R. Gupta and R. Khiroya and K. Abduljabbar and G. Acosta Haab and B. Acs and G. Akturk and J. S. Almeida and I. Alvarado-Cabrero and M. Amgad and F. Azmoudeh-Ardalan and S. Badve and N. B. Baharun and E. Balslev and E. R. Bellolio and V. Bheemaraju and K. R. Blenman and L. Botinelly Mendonça Fujimoto and N. Bouchmaa and O. Burgues and A. Chardas and M. Chon U Cheang and F. Ciompi and L. A. Cooper and A. Coosemans and G. Corredor and A. B. Dahl and F. L. Dantas Portela and F. Deman and S. Demaria and J. Doré Hansen and S. N. Dudgeon and T. Ebstrup and M. Elghazawy and C. Fernandez-Martín and S. B. Fox and W. M. Gallagher and J. M. Giltnane and S. Gnjatic and P. I. Gonzalez-Ericsson and A. Grigoriadis and N. Halama$^*$ and M. G. Hanna and A. Harbhajanka and S. N. Hart and J. Hartman and S. Hauberg and S. Hewitt and A. I. Hida and H. M. Horlings and Z. Husain and E. Hytopoulos and S. Irshad and E. A. Janssen and M. Kahila and T. R. Kataoka and K. Kawaguchi and D. Kharidehal and A. I. Khramtsov and U. Kiraz and P. Kirtani and L. L. Kodach and K. Korski and A. Kovács and A.-V. Laenkholm and C. Lang-Schwarz and D. Larsimont and J. K. Lennerz and M. Lerousseau and X. Li and A. Ly and A. Madabhushi and S. K. Maley and V. Manur Narasimhamurthy and D. K. Marks and E. S. McDonald and R. Mehrotra and S. Michiels and F. U. A. A. Minhas and S. Mittal and D. A. Moore and S. Mushtaq and H. Nighat and T. Papathomas and F. Penault-Llorca and R. D. Perera and C. J. Pinard and J. C. Pinto-Cardenas and G. Pruneri and L. Pusztai and A. Rahman and N. M. Rajpoot and B. L. Rapoport and T. T. Rau and J. S. Reis-Filho and J. M. Ribeiro and D. Rimm and A. Roslind and A. Vincent-Salomon and M. Salto-Tellez and J. Saltz and S. Sayed and E. Scott and K. P. Siziopikou and C. Sotiriou and A. Stenzinger and M. A. Sughayer and D. Sur and S. Fineberg and F. Symmans and S. Tanaka and T. Taxter and S. Tejpar and J. Teuwen and E. A. Thompson and T. Tramm and W. T. Tran and J. van der Laak and P. J. van Diest and G. E. Verghese and G. Viale and M. Vieth and N. Wahab and T. Walter and Y. Waumans and H. Y. Wen and W. Yang and Y. Yuan and R. M. Zin and S. Adams and J. Bartlett and S. Loibl and C. Denkert and P. Savas and S. Loi and R. Salgado and E. Specht Stovgaard}, title = {{P}itfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: a report of the international immuno-oncology biomarker working group.}, journal = {The journal of pathology}, volume = {260}, number = {5}, issn = {0368-3494}, address = {Bognor Regis [u.a.]}, publisher = {Wiley}, reportid = {DKFZ-2023-01701}, pages = {498-513}, year = {2023}, note = {2023 Aug;260(5):498-513}, abstract = {The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley $\&$ Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.}, subtyp = {Review Article}, keywords = {deep learning (Other) / digital pathology (Other) / guidelines (Other) / image analysis (Other) / machine learning (Other) / pitfalls (Other) / prognostic biomarker (Other) / triple-negative breast cancer (Other) / tumor-infiltrating lymphocytes (Other)}, cin = {D240}, ddc = {610}, cid = {I:(DE-He78)D240-20160331}, pnm = {314 - Immunologie und Krebs (POF4-314)}, pid = {G:(DE-HGF)POF4-314}, typ = {PUB:(DE-HGF)16}, pubmed = {pmid:37608772}, doi = {10.1002/path.6155}, url = {https://inrepo02.dkfz.de/record/278730}, }