000282341 001__ 282341
000282341 005__ 20240918104232.0
000282341 0247_ $$2doi$$a10.1038/s41375-023-01999-6
000282341 0247_ $$2pmid$$apmid:37591941
000282341 0247_ $$2ISSN$$a0887-6924
000282341 0247_ $$2ISSN$$a1476-5551
000282341 0247_ $$2altmetric$$aaltmetric:153933927
000282341 037__ $$aDKFZ-2023-01725
000282341 041__ $$aEnglish
000282341 082__ $$a610
000282341 1001_ $$00009-0001-0741-1166$$aJahn, Ekaterina$$b0
000282341 245__ $$aClinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients.
000282341 260__ $$aLondon$$bSpringer Nature$$c2023
000282341 3367_ $$2DRIVER$$aarticle
000282341 3367_ $$2DataCite$$aOutput Types/Journal article
000282341 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726648934_14745
000282341 3367_ $$2BibTeX$$aARTICLE
000282341 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000282341 3367_ $$00$$2EndNote$$aJournal Article
000282341 500__ $$a2023 Nov;37(11):2187-2196
000282341 520__ $$aTo characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes (ASXL1, TET2, SRSF2, DNMT3A) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with ASXL1, DDX41, DNMT3A, TET2, and TP53 emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified FLT3 internal tandem duplications (ITD), SRSF2, and TP53 mutations as poor prognostic factors, while DDX41 mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups: DDX41 mutations (favorable-risk), DDX41wildtype/FLT3-ITDneg/TP53wildtype (intermediate-risk), and FLT3-ITD or TP53 mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.
000282341 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000282341 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000282341 7001_ $$aSaadati, Maral$$b1
000282341 7001_ $$aFenaux, Pierre$$b2
000282341 7001_ $$aGobbi, Marco$$b3
000282341 7001_ $$aRoboz, Gail J$$b4
000282341 7001_ $$aBullinger, Lars$$b5
000282341 7001_ $$aLutsik, Pavlo$$b6
000282341 7001_ $$0P:(DE-He78)72478c70ea4e197e956747e5cefcbea7$$aRiedel, Anna$$b7$$udkfz
000282341 7001_ $$0P:(DE-He78)4301875630bc997edf491c694ae1f8a9$$aPlass, Christoph$$b8$$udkfz
000282341 7001_ $$aJahn, Nikolaus$$b9
000282341 7001_ $$aWalter, Claudia$$b10
000282341 7001_ $$aHolzmann, Karlheinz$$b11
000282341 7001_ $$aHao, Yong$$b12
000282341 7001_ $$aNaim, Sue$$b13
000282341 7001_ $$0P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9$$aSchreck, Nicholas$$b14$$udkfz
000282341 7001_ $$0P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9$$aKrzykalla, Julia$$b15$$udkfz
000282341 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b16$$udkfz
000282341 7001_ $$aKeer, Harold N$$b17
000282341 7001_ $$aAzab, Mohammad$$b18
000282341 7001_ $$00000-0002-2261-9862$$aDöhner, Konstanze$$b19
000282341 7001_ $$00000-0003-2116-5536$$aDöhner, Hartmut$$b20
000282341 773__ $$0PERI:(DE-600)2008023-2$$a10.1038/s41375-023-01999-6$$n11$$p2187-2196$$tLeukemia$$v37$$x0887-6924$$y2023
000282341 909CO $$ooai:inrepo02.dkfz.de:282341$$pVDB
000282341 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)72478c70ea4e197e956747e5cefcbea7$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000282341 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4301875630bc997edf491c694ae1f8a9$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000282341 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000282341 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000282341 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000282341 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000282341 9141_ $$y2023
000282341 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-03-30$$wger
000282341 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-30
000282341 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
000282341 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
000282341 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLEUKEMIA : 2022$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
000282341 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bLEUKEMIA : 2022$$d2023-08-23
000282341 9201_ $$0I:(DE-He78)B370-20160331$$kB370$$lEpigenomik$$x0
000282341 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000282341 980__ $$ajournal
000282341 980__ $$aVDB
000282341 980__ $$aI:(DE-He78)B370-20160331
000282341 980__ $$aI:(DE-He78)C060-20160331
000282341 980__ $$aUNRESTRICTED