000282347 001__ 282347 000282347 005__ 20240229155039.0 000282347 0247_ $$2doi$$a10.1002/pst.2334 000282347 0247_ $$2pmid$$apmid:37632266 000282347 0247_ $$2ISSN$$a1539-1604 000282347 0247_ $$2ISSN$$a1539-1612 000282347 0247_ $$2altmetric$$aaltmetric:153367286 000282347 037__ $$aDKFZ-2023-01731 000282347 041__ $$aEnglish 000282347 082__ $$a610 000282347 1001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b0$$eFirst author$$udkfz 000282347 245__ $$aSimulating and reporting frequentist operating characteristics of clinical trials that borrow external information: Towards a fair comparison in case of one-arm and hybrid control two-arm trials. 000282347 260__ $$aNew York, NY$$bWiley$$c2024 000282347 3367_ $$2DRIVER$$aarticle 000282347 3367_ $$2DataCite$$aOutput Types/Journal article 000282347 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706514978_23420 000282347 3367_ $$2BibTeX$$aARTICLE 000282347 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000282347 3367_ $$00$$2EndNote$$aJournal Article 000282347 500__ $$a#EA:C060#LA:C060# / 2024 Jan-Feb;23(1):4-19 000282347 520__ $$aBorrowing information from historical or external data to inform inference in a current trial is an expanding field in the era of precision medicine, where trials are often performed in small patient cohorts for practical or ethical reasons. Even though methods proposed for borrowing from external data are mainly based on Bayesian approaches that incorporate external information into the prior for the current analysis, frequentist operating characteristics of the analysis strategy are often of interest. In particular, type I error rate and power at a prespecified point alternative are the focus. We propose a procedure to investigate and report the frequentist operating characteristics in this context. The approach evaluates type I error rate of the test with borrowing from external data and calibrates the test without borrowing to this type I error rate. On this basis, a fair comparison of power between the test with and without borrowing is achieved. We show that no power gains are possible in one-sided one-arm and two-arm hybrid control trials with normal endpoint, a finding proven in general before. We prove that in one-arm fixed-borrowing situations, unconditional power (i.e., when external data is random) is reduced. The Empirical Bayes power prior approach that dynamically borrows information according to the similarity of current and external data avoids the exorbitant type I error inflation occurring with fixed borrowing. In the hybrid control two-arm trial we observe power reductions as compared to the test calibrated to borrowing that increase when considering unconditional power. 000282347 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0 000282347 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000282347 650_7 $$2Other$$aBayesian dynamic borrowing of information 000282347 650_7 $$2Other$$aexternal information 000282347 650_7 $$2Other$$afrequentist operating characteristics 000282347 650_7 $$2Other$$apower gain 000282347 650_7 $$2Other$$atype I error inflation 000282347 7001_ $$0P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aWiesenfarth, Manuel$$b1$$udkfz 000282347 7001_ $$aHeld, Leonhard$$b2 000282347 7001_ $$0P:(DE-He78)b5d9469407737829d5348adb615655c6$$aCalderazzo, Silvia$$b3$$eLast author$$udkfz 000282347 773__ $$0PERI:(DE-600)2083706-9$$a10.1002/pst.2334$$gp. pst.2334$$n1$$p4-19$$tPharmaceutical statistics$$v23$$x1539-1604$$y2024 000282347 909CO $$ooai:inrepo02.dkfz.de:282347$$pVDB 000282347 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000282347 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000282347 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b5d9469407737829d5348adb615655c6$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000282347 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0 000282347 9141_ $$y2023 000282347 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-17$$wger 000282347 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17 000282347 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17 000282347 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24 000282347 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24 000282347 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24 000282347 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24 000282347 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24 000282347 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHARM STAT : 2022$$d2023-10-24 000282347 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24 000282347 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24 000282347 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-24 000282347 9202_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0 000282347 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0 000282347 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0 000282347 980__ $$ajournal 000282347 980__ $$aVDB 000282347 980__ $$aI:(DE-He78)C060-20160331 000282347 980__ $$aUNRESTRICTED