001     282347
005     20240229155039.0
024 7 _ |a 10.1002/pst.2334
|2 doi
024 7 _ |a pmid:37632266
|2 pmid
024 7 _ |a 1539-1604
|2 ISSN
024 7 _ |a 1539-1612
|2 ISSN
024 7 _ |a altmetric:153367286
|2 altmetric
037 _ _ |a DKFZ-2023-01731
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 0
|e First author
|u dkfz
245 _ _ |a Simulating and reporting frequentist operating characteristics of clinical trials that borrow external information: Towards a fair comparison in case of one-arm and hybrid control two-arm trials.
260 _ _ |a New York, NY
|c 2024
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706514978_23420
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C060#LA:C060# / 2024 Jan-Feb;23(1):4-19
520 _ _ |a Borrowing information from historical or external data to inform inference in a current trial is an expanding field in the era of precision medicine, where trials are often performed in small patient cohorts for practical or ethical reasons. Even though methods proposed for borrowing from external data are mainly based on Bayesian approaches that incorporate external information into the prior for the current analysis, frequentist operating characteristics of the analysis strategy are often of interest. In particular, type I error rate and power at a prespecified point alternative are the focus. We propose a procedure to investigate and report the frequentist operating characteristics in this context. The approach evaluates type I error rate of the test with borrowing from external data and calibrates the test without borrowing to this type I error rate. On this basis, a fair comparison of power between the test with and without borrowing is achieved. We show that no power gains are possible in one-sided one-arm and two-arm hybrid control trials with normal endpoint, a finding proven in general before. We prove that in one-arm fixed-borrowing situations, unconditional power (i.e., when external data is random) is reduced. The Empirical Bayes power prior approach that dynamically borrows information according to the similarity of current and external data avoids the exorbitant type I error inflation occurring with fixed borrowing. In the hybrid control two-arm trial we observe power reductions as compared to the test calibrated to borrowing that increase when considering unconditional power.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Bayesian dynamic borrowing of information
|2 Other
650 _ 7 |a external information
|2 Other
650 _ 7 |a frequentist operating characteristics
|2 Other
650 _ 7 |a power gain
|2 Other
650 _ 7 |a type I error inflation
|2 Other
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 1
|u dkfz
700 1 _ |a Held, Leonhard
|b 2
700 1 _ |a Calderazzo, Silvia
|0 P:(DE-He78)b5d9469407737829d5348adb615655c6
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1002/pst.2334
|g p. pst.2334
|0 PERI:(DE-600)2083706-9
|n 1
|p 4-19
|t Pharmaceutical statistics
|v 23
|y 2024
|x 1539-1604
909 C O |p VDB
|o oai:inrepo02.dkfz.de:282347
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)b5d9469407737829d5348adb615655c6
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHARM STAT : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21